Design, Synthesis, Molecular docking and Biological Evaluation of Novel Leucine Derived Sulfamoyl Pentanamides as Antimicrobial and Antioxidant Agents

Authors

  • Melford Egbujor Department of Chemistry, Federal University Otuoke, Bayelsa State, Nigeria
  • Vivian Okonkwo Department of Science Laboratory Technology, University of Nigeria, Nsukka, Nigeria.
  • Ugomma Onyeije Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, Awka, Nigeria
  • Chigbundu Emeruwa Department of Chemical Sciences, Rhema University Nigeria, Aba, Abia State, Nigeria
  • Ogbonna Nkuzinna Department of Chemical Engineering, Federal University of Technology, Owerri, Nigeria
  • Pius Egwuatu Department of Microbiology, Renaissance University, Ugbawka, Enugu State, nigeria.
  • Ifeanyi Amasiatu Department of Biochemistry, Renaissance University, Ugbawka, Enugu State, Nigeria.
  • Alisa Onyemeziri Department of Chemistry, Federal University of Technology, Owerri, Nigeria.
  • Uchechukwu Okoro Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria

DOI:

https://doi.org/10.35516/jjps.v17i4.2467

Keywords:

pentanamides, leucine, sulfonamides, antimicrobial resistance, antioxidants, synthesis

Abstract

The preponderance of microbial and oxidative stress-mediated diseases is quite alarming. The need for novel drug development is highlighted by the fact that antimicrobial resistance is rising and many current antioxidant drugs only provide little symptomatic alleviation. The aim of this work was to synthesize leucine derived sulfamoyl pentanamides with antioxidant and antimicrobial activities. New leucine-based sulfamoyl pentanamides were synthesized and elemental analysis, 1H-NMR, 13C-NMR, and FTIR were used to elucidate their structures. They underwent molecular docking investigations as well as in vitro antioxidant and antimicrobial activity analyses. Compound 5a (0.60 gm/ml) was the most active compound against Pseudomonas aeroginosa, whereas compound 5f (0.30-0.40 mg/ml) was the most effective antibacterial agent against E. Coli, S. typhi, S. aureus, and B. subtilis. The compounds with the best antifungal activity against C. albican and A. niger, respectively, were 5g (0.80 mg/ml) and 5e (0.50 mg/ml). In the in vitro antioxidant assessment, compounds 5g (1.174µg/ml) and 5h (1.172µg/ml) exhibited similar antioxidant activity to ascorbic acid (IC50 1.001µglml). In addition, most of the target compounds have relatively strong antibacterial, antifungal, and antioxidant potentials, according to molecular docking study. Since every target compound complied with Lipinski's rule of five, it is likely that they might be used as therapeutic candidates to treat oxidative stress-related illnesses and microbial infections. 

References

Abu Taha A. Spectrum and Antibiotic Resistance in the Community and Hospital-Acquired Urinary Tract Infected Adults. Jordan J Pharm Sci. 2023; 16(2):455. https://doi.org/10.35516/jjps.v16i2.1494 DOI: https://doi.org/10.35516/jjps.v16i2.1494

Tai J., Shin J-M., Park J., Han M. and Kim T.H. Oxidative stress and antioxidants in chronic rhinosinusitis with nasal polyps. Antioxidants. 2023; 12:195.

DOI: https://doi.org/10.3390/antiox12010195 DOI: https://doi.org/10.3390/antiox12010195

Egbujor M.C., Okoro U.C., Egu A.S., Okonkwo V.I., Okafor S.N., Emeruwa C.N., et al. Synthesis and biological evaluation of sulfamoyl carboxamide derivatives from sulfur-containing α-amino acids. Chiang Mai J. Sci. 2022; 49: 1100–1115

DOI: https://doi.org/10.12982/CMJS.2022.070 DOI: https://doi.org/10.12982/CMJS.2022.070

Meunier B. Hybrid Molecules with a Dual Mode of Action: Dream or Reality. Acc Chem Res. 2009; 41:69-77. DOI: https://doi.org/10.1021/ar7000843 DOI: https://doi.org/10.1021/ar7000843

Chugunova E.A. and Burilov A.R. Novel Structural Hybrids on the Base of Benzofuroxans and Furoxans. Mini-Review. Curr Top Med Chem. 2017; 17: 986–1005. DOI: https://doi.org/10.2174/1568026616666160927145822. DOI: https://doi.org/10.2174/1568026616666160927145822

Egbujor M.C. and Okoro U.C. New methionine-based p-toluenesulphonamoyl carboxamide derivatives as antimicrobial and antioxidant agents: design, synthesis and molecular docking. J. Pharm. Res. Int. 2019; 28:1-12. DOI: https://doi.org/10.9734/jpri/2019/v28i130192 DOI: https://doi.org/10.9734/jpri/2019/v28i130192

Egbujor M.C., Okoro U.C., Okafor S. and Nwankwo N.E. Design, synthesis and molecular docking of novel serine-based sulphonamide bioactive compounds as potential antioxidant and antimicrobial agents. Indo Am J Pharm Sci. 2019; 06:12232–12240.

DOI: https://doi.org/10.5281/zenodo.3250306

Egbujor M.C., Okoro U.C., Emeruwa C.N., Umeh O.R., Eziafakaego M.I., Egwuatu P.I., et al. Synthesis of Sulphonamides Using Threonine, and Evaluation of Their Biological Activities; in Rizvi S.A.A., ed., Challenges and Advances in Pharmaceutical Research, Vol. 2. P.B. International, India, 2022; 95–107.

https://doi.org/10.9734/bpi/capr/v2/2274E. DOI: https://doi.org/10.9734/bpi/capr/v2/2274E

Fox S.W., Fling M. and Bollenback G.N. Inhibition of bacterial growth by d-leucine. J. Biol. Chem. 1944; 155:465-468.

DOI: https://doi.org/10.1016/S0021-9258(18)51176-5. DOI: https://doi.org/10.1016/S0021-9258(18)51176-5

Brunati M., Bava A. and Lancini G. Influence of leucine and valine on ramoplanin production by Actinoplanes sp. ATCC 33076. J Antibiot. 2005; 58:473-478.

DOI: https://doi.org/10.1038/ja.2005.63. DOI: https://doi.org/10.1038/ja.2005.63

Jin H.J., Lee J.H., Kim H.H., Kim K-T., Lee G.W., Choi S.J., Chang, P-S. and Park H-D. Antioxidative and nitric oxide scavenging activity of branched-chain amino acids. Food Sci Biotechnol. 2015; 24:1555-1558.

DOI: https://doi.org/10.1007/s10068-015-0200-2. DOI: https://doi.org/10.1007/s10068-015-0200-2

Egbujor M.C., Okoro U.C., Okafor S.N., Amasiatu I.S., Amadi U.B. and Egwuatu P.I. Synthesis, molecular docking and pharmacological investigation of some 4-methylphenylsulphamoyl carboxylic acid analogs. Int. J. Res. Pharm. Sci. 2020;11:5357-5366.

DOI: https://doi.org/10.26452/ijrps.v11i4.3157. DOI: https://doi.org/10.26452/ijrps.v11i4.3157

Egbujor M.C., Okoro U.C. and Okafor S. Design, synthesis, molecular docking, antimicrobial, and antioxidant activities of new phenylsulfamoyl carboxylic acids of pharmacological interest. Med. Chem. Res. 2019; 28:2118-2127. DOI: https://doi.org/10.1007/s00044-019-02440-3. DOI: https://doi.org/10.1007/s00044-019-02440-3

Egbujor M.C., Okoro U.C., Okafor S. and Nwankwo N.E. Synthesis, characterization, and in silico studies of novel alkanoylated 4-‎methylphenyl sulphonamoyl carboxylic acids as potential antimicrobial and ‎antioxidant agents. Int. J. Pharm. Phytopharm. Res. 2019; 9:89-97.

Raul S.J., More A.H. And Mahajan S.S. Intl. J. of Res Pharm Chem. 2011; 1(4): 991.

Egbujor M.C., Egu S.A., Okonkwo V.I., Jacob A.D., Egwuatu P.I. and Amasiatu I.S. Antioxidant drug design: historical and recent developmentsj. Pharm. Res. Int. 2021; 32:36-56.

DOI: https://doi.org/10.9734/jpri/2020/v32i4131042. DOI: https://doi.org/10.9734/jpri/2020/v32i4131042

Badgujar J.R., More D.H. and Meshram J.S. Synthesis, antimicrobial and antioxidant activity of pyrazole-based sulfonamide derivatives. Indian J Microbiol. 2018; 58:93-99. DOI: https://doi.org/10.1007/s12088-017-0689-6. DOI: https://doi.org/10.1007/s12088-017-0689-6

Egbujor M.C., Garrido J., Borges F. and Saso L. Sulfonamide a valid scaffold for antioxidant drug development. Mini Rev Org Chem. 2023; 20:190-209.

DOI: https://doi.org/10.2174/1570193X19666220411134006. DOI: https://doi.org/10.2174/1570193X19666220411134006

Egbujor M.C., Petrosino M., Zuhra K. and Saso L. The role of organosulfur compounds as nrf2 activators and their antioxidant effects. Antioxidants. 2022; 11:1255. DOI: https://doi.org/10.3390/antiox11071255. DOI: https://doi.org/10.3390/antiox11071255

Bhole R., Zambare Y. and Bonde C. Synthesis and evaluation of novel n‐cycloheptyl‐substituted ‐2,3‐ dihydro‐1,3‐ benzothiazole‐2‐carboxamide targeting the estrogen binding receptor, Jordan J Pharm Sci. 2019; 12(3).

Venanzi L.M. Tetrahedral complexes of nickel (II) and the factors determining their formation. J. Chem. Soc. 1958; 8:137-142.

DOI: https://doi.org/10.1016/0022-1902(58)80175-x. DOI: https://doi.org/10.1016/0022-1902(58)80175-X

Wiegand I., Hilpert K. and Hancock R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008; 3:163-175. DOI: https://doi.org/10.1038/nprot.2007.521

DOI: https://doi.org/10.1038/ nprot.2007.521.

Blois M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature. 1958; 181:1199–1200.

DOI; https://doi.org/10.1038/1811199a0. DOI: https://doi.org/10.1038/1811199a0

Panchaud P., Bruyere T., Blumstein A. C., Bur D., Chambovey A., Ertel E. A. and Rueedi G. Discovery and Optimization of Isoquinoline Ethyl Ureas as Antibacterial Agents. J Med Chem. 2017; 60:3755-3775.

DOI: https://doi.org/10.1021/acs.jmedchem.6b01834. DOI: https://doi.org/10.1021/acs.jmedchem.6b01834

Retailleau P., Colloc'h N., Vivares D., Bonneté F., Castro B., El Hajji M. and Prangé T. Urate oxidase from Aspergillus flavus: new crystal-packing contacts in relation to the content of the active site. Acta Crystallogr D Biol Crystallogr. 2005; 61:218-29.

DOI; https://doi.org/10.1107/S0907444904031531. DOI: https://doi.org/10.1107/S0907444904031531

Evrard C., SA-Namur B. V., Clippe A., Bernard A. and Knoops B. Crystal structure of human peroxiredoxin 5, a novel type of mammalian peroxiredoxin at 1.5 A resolution. J Mol Biol. 2001; 311:751-9.

DOI: https://doi.org/10.1006/jmbi.2001.4853. DOI: https://doi.org/10.1006/jmbi.2001.4853

Trott O. and Olson A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010; 31(2):455–461.

DOI: https://doi.org/10.1002/jcc.21334. DOI: https://doi.org/10.1002/jcc.21334

Egbujor M.C., Nwobodo D.C., Egwuatu P.I., Abu I.P. and Ezeagu C.U. Sulphonamide drugs and pseudomonas aeruginosa resistance: a review. Int. J. Modern Pharm. Res. 2020; 4:78-83.

Egbujor M.C., Okoro U.C., Egu S.A., Egwuatu P.I., Eze F.U. and Amasiatu I.S. Synthesis and biological evaluation of alanine derived bioactive p-toluenesulphonamide analogs. Int. J. Res. Pharm. Sci. 2020; 11:6449-6458.

DOI: https://doi.org/10.26452/ijrps.v11i4.3440. DOI: https://doi.org/10.26452/ijrps.v11i4.3440

Miller-Hjelle M.A., Somaraju V. and Hjelle J.T. Modern Pharmacology with Clinical Applications/edited by C. R. Craig, R.E. Stitzel, (6th ed). Philadelphia: Lippincott Williams & Wilkins. 2004.

DOI: https://trove.nla.gov.au/version/46530718.

Zessel K., Mohring S., Hamscher G., Kietzmann M. and Stahl J. Biocompatibility and antibacterial activity of photolytic products of sulfonamides. Chemosphere. 2014; 100:167-174.

DOI: https://doi.org/10.1016/j.chemosphere.2013.11.038. DOI: https://doi.org/10.1016/j.chemosphere.2013.11.038

Egbujor M.C., Okoro U.C. and Okafor S. Novel alanine-based antimicrobial and antioxidant agents: synthesis and molecular docking. Indian J. Sci. Technol. 2020; 13:1003-1014.

DOI: https://doi.org/10.17485/ijst/2020/v013i09/146687. DOI: https://doi.org/10.17485/ijst/2020/v013i09/146687

Mahmoud I., Altaif K., Sini M.A., Daoud S. and Aqel N. Determination of antimicrobial drug resistance among bacterial isolates in two hospitals of Baghdad. Jordan J Pharm Sci. 2020; 13(1).

Egbujor M.C., Okoro U.C., Okafor S.N., Egu S.A., Amasiatu I.S., Egwuatu P.I., et al. Design, synthesis, and molecular docking of cysteine-based sulphonamide derivatives as antimicrobial agents. Res Pharm Sci. 2021; 17:99-110.

DOI: https://doi.org/10.4103/1735-5362.329930. DOI: https://doi.org/10.4103/1735-5362.329930

Ovung A. and Bhattacharyya J. Sulfonamide drugs: structure, antibacterial property, toxicity, and biophysical interactions. Biophys Rev. 2021; 13(2):259-272.

doi: https://doi.org/10.1007/s12551-021-00795-9 DOI: https://doi.org/10.1007/s12551-021-00795-9

Setha B., Gaspersz F., Febe F., Idris A.P.S., Rahman S. and Mailoa M.N. Potential of seaweed padina sp. as a source of antioxidant. Int. J. Sci. Tech. Res. 2013, 26:221.

Egbujor M.C., Okoro U.C., Nwobodo D.C., Ezeagu C.U., Amadi U.B., Okenwa-Ani C.G., et al. Design, Synthesis, Antimicrobial and Antioxidant Activities of Novel Threonine-based Sulfonamide Derivatives. J. Pharm. Res. Int. 2020; 32:51-61.

DOI: https://doi.org/10.9734/jpri/2020/v32i830470. DOI: https://doi.org/10.9734/jpri/2020/v32i830470

Egbujor M.C., Olaniyan O.T., Emeruwa C.N., Saha S., Saso L. and Tucci P. An insight into role of amino acids as antioxidants via NRF2 activation. Amino Acid. 2024; 56:23.

Doi: https://doi.org/10.1007/s00726-024-03384-8 DOI: https://doi.org/10.1007/s00726-024-03384-8

Lipinski C.A., Lombardo F., Dominy B.W. and Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001; 46:3-26.

DOI: https://doi.org/10.1016/s0169-409x(00)00129-0. DOI: https://doi.org/10.1016/S0169-409X(00)00129-0

Verber D.F., Johnson S.R., Cheng H.Y., Smith B.R., Ward K.W. and Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002; 45:2615-2623.

https://doi.org/10.1021/jm020017n. DOI: https://doi.org/10.1021/jm020017n

Van de waterbeemd H., Carter R.E., Grassy G., Kubinyi H., Martins Y.C., Tute M.S., et al. Glossary of terms used in computational drug design (IUPAC Recommendations 1997). Pure Appl. Chem. 1997; 69:1137-1152.

DOI: https://doi.org/10.1351/pac199769051137. DOI: https://doi.org/10.1351/pac199769051137

Makhlouf J., Louis H., Benjamin I., Ukwenya E., Valkonen A. & Smirani W. Single crystal investigations, spectral analysis, DFT studies, antioxidants, and molecular docking investigations of novel hexaisothiocyanato chromate complex. J Mol Struct. 2023; 1272:134223.

DOI: https://doi.org/10.1016/j.molstruc.2022.134223. DOI: https://doi.org/10.1016/j.molstruc.2022.134223

Ibezim A., Onuku R., Ottih C., Ezeonu I., Onoabedje E. A., Ramanathan K. and Nwodo N. New sulphonamide-peptide hybrid molecules as potential PBP 2a ligands and methicillin resistant Staphylococcus aureus actives. J Biomol Struct Dyn, 2022; 41:6684-6694.

DOI: https://doi.org/10.1080/07391102.2022.2111359 DOI: https://doi.org/10.1080/07391102.2022.2111359

Egbujor M.C. Synthesis and biological evaluation of proline derived sulphonamides. J Res Pharm Sci. 2023; 9:19-26.

Onoabedje E.A., Ibezim A., Okoro U.C. and Batra S. New sulphonamide pyrolidine carboxamide derivatives: Synthesis, molecular docking, antiplasmodial and antioxidant activities. PLos one. 2021; 16:e0243305 https://doi.org/10.1371/journal.pone.0243305 DOI: https://doi.org/10.1371/journal.pone.0243305

Ibezim A., Onoabedje E. A., Adaka I. C., Omeje K. and Onoabedje U. S. Carboxamides bearing sulfonamide functionality as potential novel phospholipase A2 inhibitors. Chemistryselect. 2020; 5:14416–14421. DOI: https://doi.org/10.1002/slct.202003784 DOI: https://doi.org/10.1002/slct.202003784

Onoabedje E. A., Ibezim A., Okoro U.C. and Batra S. Synthesis, molecular docking, antiplasmodial and antioxidant activities of new sulfonamido-pepetide derivatives. Heliyon. 2020; 6:e04958. DOI: https://doi.org/10.1016/j.heliyon.2020.e04958. DOI: https://doi.org/10.1016/j.heliyon.2020.e04958

Egbujor M.C. Sulfonamide Derivatives: Recent Compounds with Potent Anti- Alzheimer’s Disease Activity, Cent Nerv Syst Agents Med Chem. 2024; 24:82-104.

DOI:https://dx.doi.org/10.2174/0118715249278489231128042135 DOI: https://doi.org/10.2174/0118715249278489231128042135

Maslov O., Komisarenko M., Kolisnyk S. and Derymedvid L. Evaluation of Anti-Inflammatory, Antioxidant Activities and Molecular Docking Analysis of Rubus idaeus Leaf Extract. Jordan J Pharm Sci, 2024; 17(1):105–122.

https://doi.org/10.35516/jjps.v17i1.1808 DOI: https://doi.org/10.35516/jjps.v17i1.1808

Downloads

Published

2024-12-20

How to Cite

Egbujor, M., Okonkwo, V., Onyeije, U. ., Emeruwa, C., Nkuzinna, O. ., Egwuatu, P. ., Amasiatu, I. ., Onyemeziri, A. ., & Okoro, U. . (2024). Design, Synthesis, Molecular docking and Biological Evaluation of Novel Leucine Derived Sulfamoyl Pentanamides as Antimicrobial and Antioxidant Agents . Jordan Journal of Pharmaceutical Sciences, 17(4), 687–705. https://doi.org/10.35516/jjps.v17i4.2467

Issue

Section

Articles