Anti-Tumorgenic Impact of Nano-Formulated Peptide HIF-Alpha Therapy by DMBA Induced Mammary Carcinoma in Rodent Type

Authors

  • Dharmar Manimaran Department of Animal Nutrition, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal, Tamil Nadu, India.
  • Namasivayam Elangovan Department of Biotechnology, School of Biosciences, Periyar University, Salem, Tamil Nadu, India.
  • Vasan Palanisamy Department of Animal Nutrition, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal, Tamil Nadu, India.

DOI:

https://doi.org/10.35516/jjps.v17i4.2482

Keywords:

Personalized medicine, HIF-alpha, Breast Cancer, Peptide and Therapeutic adjuvan

Abstract

Over the past decade, personalized medicine has acquired considerable attention, emerging as a promising avenue for enhancing cancer treatment and therapy. Within this rapidly increasing field, the latest research introduces an innovative approach focused on a nano-formulated peptide, HIF-alpha, distinguished by its unique dual pharmacological potential. Various tumor-induced rat model has been undertaken to assess the peptide's efficacy in combatting DMBA-induced breast cancer. The findings clearly demonstrate the synthesized peptide's profound impact on various feature of tumor biology, including the proliferation of malignant cells, the synthesis of fatty acids crucial for cellular metabolism, and the regulation of lactate levels implicated in tumor progression. Histopathological analyses provide compelling evidence of the peptide's ability to established multifaceted pharmacological effects within the tumor microenvironment. Moreover, it has been demonstrated that regulatory influence on key membrane receptors, namely HER2 and EGFR, further underscores its therapeutic promise. In summary, the peptide HIF-alpha emerges as a potential landmark, offering a more efficacious therapeutic adjunct to existing medications, irrespective of the malignancy's stage. This innovative discovery holds transformative potential in reshaping conventional cancer treatment paradigms, heralding a new era of precision medicine in oncology.

References

Fathi M., Alami-Milani M., Geranmayeh M.H., Barar J., Erfan-Niya H. and Omidi Y. Dual thermo-and pH-sensitive injectable hydrogels of chitosan/(poly(N-isopropylacrylamide-co-itaconic acid)) for doxorubicin delivery in breast cancer. Int. J. Biol. Macromol. 2019; 128:957–964. doi: 10.1016/j.ijbiomac.2019.01.122. DOI: https://doi.org/10.1016/j.ijbiomac.2019.01.122

Mirza Z. and Karim S. Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges. Semin. Cancer Biol. 2021; 69:226–237. doi: 10.1016/j.semcancer.2019.10.020. DOI: https://doi.org/10.1016/j.semcancer.2019.10.020

Richa M., Muhammad Y., Maywan H., Amira M.G., Muchtaridi M. α-Mangostin and its derivatives against estrogen receptor alpha. J. Biomol. Struct. Dyn. 2020;1–14. doi: 10.1080/07391102.2020.1841031. DOI: https://doi.org/10.1080/07391102.2020.1841031

Mostafa A.S., Gomaa R.M. and Elmorsy M.A. Design and synthesis of 2-phenyl benzimidazole derivatives as VEGFR-2 inhibitors with anti-breast cancer activity. Chem. Biol. Drug Des. 2019; 93:454–463.

doi: 10.1111/cbdd.13433. DOI: https://doi.org/10.1111/cbdd.13433

Ansari M.A., Thiruvengadam M., Farooqui Z., Rajakumar G., Jamal Q.M.S., Alzohairy M.A., Almatroudi A., Alomary M.N., Chung I.-M. and Al-Suhaimi E.A. Nanotechnology, in silico and endocrine-based strategy for delivering paclitaxel and miRNA: Prospects for the therapeutic management of breast cancer. Semin. Cancer Biol. 2019.

doi: 10.1016/j.semcancer.2019.12.022. DOI: https://doi.org/10.1016/j.semcancer.2019.12.022

Shanmuganathan R., Edison T.N.J.I., LewisOscar F., Kumar P., Shanmugam S. and Pugazhendhi A. Chitosan nanopolymers: An overview of drug delivery against cancer. Int. J. Biol. Macromol. 2019; 130:727–736.

doi: 10.1016/j.ijbiomac.2019.02.060. DOI: https://doi.org/10.1016/j.ijbiomac.2019.02.060

Borghouts C., Kunz C. and Groner B. Current strategies for the development of peptide-based anti-cancer therapeutics. J Pept Sci. 2005; 11(11):713–726. DOI: https://doi.org/10.1002/psc.717

Enback J. and Laakkonen P. Tumour-homing peptides: tools for targeting, imaging and destruction. Biochem Soc Trans. 2007; 35(4):780–783. DOI: https://doi.org/10.1042/BST0350780

Zhang X.X., Eden H.S. and Chen X. Peptides in cancer nanomedicine,drug carriers,targeting ligands and protease substrates. J Control Release. 2012; 159:2-13.

Thundimadathil J. Cancer treatment using peptides: current therapies and future prospects. Journal of amino acids. 2012; 9(6):7-16. DOI: https://doi.org/10.1155/2012/967347

Adams J., and Kauffman M. Development of the proteasome inhibitor Velcade™ (Bortezomib). Cancer investigation. 2004; 22(2):304-311. DOI: https://doi.org/10.1081/CNV-120030218

Meyers P. A., Schwartz C. L., Krailo M., Kleinerman E. S., Betcher D., Bernstein M. L., and Grier H. Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. Journal of clinical oncology. 2005; 23(9):2004-2011. DOI: https://doi.org/10.1200/JCO.2005.06.031

Manimaran D., et al. Molecular insights of newly identified potential peptide inhibitors of hypoxia inducible factor 1α causing breast cancer. J. Mol. Struct. 2019; 1177:558–563. https://doi.org/10.1016/j.molstruc.2018.09.072. DOI: https://doi.org/10.1016/j.molstruc.2018.09.072

Semenza G.L. Hypoxia-inducible factors: mediators ofcancer progression and targets for cancer therapy. Trends Pharmacol Sci. 2012; 33(4):207-214. DOI: https://doi.org/10.1016/j.tips.2012.01.005

Li X., Chen Y.T., Josson S., Mukhopadhyay N.K., Kim J., Freeman M.R. and Huang W.C. MicroRNA-185 and 342 inhibit tumorigenicity and induce apoptosis through blockade of the SREBP metabolic pathway in prostate cancer cells. PLoS One. 2013; 8(8):e70987. DOI: https://doi.org/10.1371/journal.pone.0070987

Chen I.T., et al. Characterization of p21Cip1/Waf1 peptide domains required for cyclin E/Cdk2 and PCNA interaction. Oncogene. 1996; 12(3):595–607.

Dorsam R.T. and Gutkind J.S. G-protein-coupled receptors and cancer. Nat Rev Cancer. 2007; 7(2):79–94. DOI: https://doi.org/10.1038/nrc2069

Afzal M., Alharbi K. S., Alruwaili N. K., Al-Abassi F. A., Al-Malki A. A. L., Kazmi I., and Anwar F. Nanomedicine in treatment of breast cancer–A challenge to conventional therapy. In Seminars in cancer biology. 2021; (69):279-292. DOI: https://doi.org/10.1016/j.semcancer.2019.12.016

Abu Dayyih W., Hailat M., Albtoush S., Albtoush E., Abu Dayah A., Alabbadi I. and Hamad M. F. Nanomedicine Advancements in Cancer Therapy: A Scientific Review. Jordan Journal of Pharmaceutical Sciences. 2014; 17(3). DOI: https://doi.org/10.35516/jjps.v17i3.2384

Ibraheem L. M. and Khattabi A. M. Studying the Effect of Functional Group and Size of Silica Nanoparticles Loaded with Quercetin on their in vitro Characteristics. Jordan Journal of Pharmaceutical Sciences. 2022; 15(4). DOI: https://doi.org/10.35516/jjps.v15i4.679

Kzar H. H., Al-Gazally M. E. and Wtwt M. A. Everolimus loaded NPs with FOL targeting: preparation, characterization and study of its cytotoxicity action on MCF-7 breast cancer cell lines. Jordan Journal of Pharmaceutical Sciences. 2022; 15(1). DOI: https://doi.org/10.35516/jjps.v15i1.286

Jafernik K., Ładniak A., Blicharska E., Czarnek K., Ekiert H., Wiącek A.E. and Szopa A. Chitosan-Based Nanoparticles as Effective Drug Delivery Systems-A review. Molecules. 2023; 28(4):1963.

doi: 10.3390/molecules28041963. DOI: https://doi.org/10.3390/molecules28041963

Herdiana Y., Wathoni N., Shamsuddin S., Joni I. M., and Muchtaridi M. Chitosan-Based Nanoparticles of Targeted Drug Delivery System in Breast Cancer Treatment. Polymers. 2021; 13(11):1717. https://doi.org/10.3390/polym13111717. DOI: https://doi.org/10.3390/polym13111717

Manimaran D., Elangovan N., Mani P., Subramanian K., Ali D., Alarifi S. and Kalirajan A. Isolongifolene-loaded chitosan nanoparticles synthesis and characterization for cancer treatment. Scientific Reports. 2022; 12(1):19250. https://doi.org/10.1038/s41598-022-23386-4. DOI: https://doi.org/10.1038/s41598-022-23386-4

Fukamachi K., Han B. S., Kim C. K., Takasuka N., Matsuoka Y., Matsuda E. and Tsuda H. Possible enhancing effects of atrazine and nonylphenol on 7, 12‐dimethylbenz [a] anthracene‐induced mammary tumor development in human c‐Ha‐ras proto‐oncogene transgenic rats. Cancer science. 2004; 95(5):404-410. DOI: https://doi.org/10.1111/j.1349-7006.2004.tb03223.x

McCormick D.L., Adamowski C.B., Fiks A. and Moon R.C. Lifetime dose-response relationships for mammary tumor induction by a single administration of Nmethyl- N-nitrosourea. Cancer Res. 1981; 41(5):1690-4.

Zhang X. X., Eden H. S. and Chen X. Peptides in cancer nanomedicine: drug carriers, targeting ligands and protease substrates. Journal of controlled release. 2012; 159(1):2-13. DOI: https://doi.org/10.1016/j.jconrel.2011.10.023

Chen K. and Chen X. Integrin targeted delivery of chemotherapeutics. Theranostics. 2011; 1:189-200. DOI: https://doi.org/10.7150/thno/v01p0189

Kaliaperumal J., Padarthi P., Elangovan N., and Hari N. Anti-tumorigenic effect of nano formulated peptide pACC1 by diminishing de novo lipogenisis in DMBA induced mammary carcinoma rat model. Biomedicine & Pharmacotherapy. 2014; 68(6):763-773. DOI: https://doi.org/10.1016/j.biopha.2014.07.016

Mirzaei S., Ranjbar B., Tackallou S. H. and Aref A. R. Hypoxia inducible factor-1α (HIF-1α) in breast cancer: The crosstalk with oncogenic and onco-suppressor factors in regulation of cancer hallmarks. Pathology, research and practice. 2023; 248:154676. https://doi.org/10.1016/j.prp.2023.154676. DOI: https://doi.org/10.1016/j.prp.2023.154676

Javier, Menendez J.A. and Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007; 7:763–777 DOI: https://doi.org/10.1038/nrc2222

Downloads

Published

2024-12-20

How to Cite

Manimaran, D., Elangovan, N., & Palanisamy, V. (2024). Anti-Tumorgenic Impact of Nano-Formulated Peptide HIF-Alpha Therapy by DMBA Induced Mammary Carcinoma in Rodent Type. Jordan Journal of Pharmaceutical Sciences, 17(4), 783–793. https://doi.org/10.35516/jjps.v17i4.2482

Issue

Section

Articles