التأثير المضاد للورم لعلاج الببتيد HIF-alpha المصاغ بالنانو بواسطة سرطان الثدي الناجم عن DMBA في نوع القوارض
DOI:
https://doi.org/10.35516/jjps.v17i4.2482الكلمات المفتاحية:
الطب الشخصي، HIF-alpha، سرطان الثدي، الببتيد والمكمل العلاجي المساعدالملخص
على مدى العقد الماضي، اكتسب الطب الشخصي اهتمامًا كبيرًا، حيث ظهر كطريق واعد لتعزيز علاج السرطان. وفي هذا المجال المتزايد بسرعة، يقدم أحدث الأبحاث نهجًا مبتكرًا يركز على ببتيد مُصاغ على شكل نانو، HIF-alpha، يتميز بإمكاناته الدوائية المزدوجة الفريدة. تم إجراء نماذج مختلفة للفئران المستحثة بالورم لتقييم فعالية الببتيد في مكافحة سرطان الثدي الناجم عن DMBA. توضح النتائج بوضوح التأثير العميق للببتيد المُصنَّع على سمات مختلفة من بيولوجيا الورم، بما في ذلك تكاثر الخلايا الخبيثة، وتخليق الأحماض الدهنية الضرورية لعملية التمثيل الغذائي الخلوي، وتنظيم مستويات اللاكتات المتورطة في تطور الورم. توفر التحليلات النسيجية المرضية أدلة دامغة على قدرة الببتيد على إحداث تأثيرات دوائية متعددة الأوجه داخل بيئة الورم. علاوة على ذلك، فقد ثبت أن التأثير التنظيمي على مستقبلات الغشاء الرئيسية، وهي HER2 وEGFR، يؤكد بشكل أكبر على وعده العلاجي. باختصار، يبرز الببتيد HIF-alpha كمعلم بارز محتمل، حيث يقدم مكملًا علاجيًا أكثر فعالية للأدوية الحالية، بغض النظر عن مرحلة الخباثة. يحمل هذا الاكتشاف المبتكر إمكانات تحويلية في إعادة تشكيل نماذج علاج السرطان التقليدية، ويبشر بعصر جديد من الطب الدقيق في علم الأورام.
المراجع
Fathi M., Alami-Milani M., Geranmayeh M.H., Barar J., Erfan-Niya H. and Omidi Y. Dual thermo-and pH-sensitive injectable hydrogels of chitosan/(poly(N-isopropylacrylamide-co-itaconic acid)) for doxorubicin delivery in breast cancer. Int. J. Biol. Macromol. 2019; 128:957–964. doi: 10.1016/j.ijbiomac.2019.01.122. DOI: https://doi.org/10.1016/j.ijbiomac.2019.01.122
Mirza Z. and Karim S. Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges. Semin. Cancer Biol. 2021; 69:226–237. doi: 10.1016/j.semcancer.2019.10.020. DOI: https://doi.org/10.1016/j.semcancer.2019.10.020
Richa M., Muhammad Y., Maywan H., Amira M.G., Muchtaridi M. α-Mangostin and its derivatives against estrogen receptor alpha. J. Biomol. Struct. Dyn. 2020;1–14. doi: 10.1080/07391102.2020.1841031. DOI: https://doi.org/10.1080/07391102.2020.1841031
Mostafa A.S., Gomaa R.M. and Elmorsy M.A. Design and synthesis of 2-phenyl benzimidazole derivatives as VEGFR-2 inhibitors with anti-breast cancer activity. Chem. Biol. Drug Des. 2019; 93:454–463.
doi: 10.1111/cbdd.13433. DOI: https://doi.org/10.1111/cbdd.13433
Ansari M.A., Thiruvengadam M., Farooqui Z., Rajakumar G., Jamal Q.M.S., Alzohairy M.A., Almatroudi A., Alomary M.N., Chung I.-M. and Al-Suhaimi E.A. Nanotechnology, in silico and endocrine-based strategy for delivering paclitaxel and miRNA: Prospects for the therapeutic management of breast cancer. Semin. Cancer Biol. 2019.
doi: 10.1016/j.semcancer.2019.12.022. DOI: https://doi.org/10.1016/j.semcancer.2019.12.022
Shanmuganathan R., Edison T.N.J.I., LewisOscar F., Kumar P., Shanmugam S. and Pugazhendhi A. Chitosan nanopolymers: An overview of drug delivery against cancer. Int. J. Biol. Macromol. 2019; 130:727–736.
doi: 10.1016/j.ijbiomac.2019.02.060. DOI: https://doi.org/10.1016/j.ijbiomac.2019.02.060
Borghouts C., Kunz C. and Groner B. Current strategies for the development of peptide-based anti-cancer therapeutics. J Pept Sci. 2005; 11(11):713–726. DOI: https://doi.org/10.1002/psc.717
Enback J. and Laakkonen P. Tumour-homing peptides: tools for targeting, imaging and destruction. Biochem Soc Trans. 2007; 35(4):780–783. DOI: https://doi.org/10.1042/BST0350780
Zhang X.X., Eden H.S. and Chen X. Peptides in cancer nanomedicine,drug carriers,targeting ligands and protease substrates. J Control Release. 2012; 159:2-13.
Thundimadathil J. Cancer treatment using peptides: current therapies and future prospects. Journal of amino acids. 2012; 9(6):7-16. DOI: https://doi.org/10.1155/2012/967347
Adams J., and Kauffman M. Development of the proteasome inhibitor Velcade™ (Bortezomib). Cancer investigation. 2004; 22(2):304-311. DOI: https://doi.org/10.1081/CNV-120030218
Meyers P. A., Schwartz C. L., Krailo M., Kleinerman E. S., Betcher D., Bernstein M. L., and Grier H. Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. Journal of clinical oncology. 2005; 23(9):2004-2011. DOI: https://doi.org/10.1200/JCO.2005.06.031
Manimaran D., et al. Molecular insights of newly identified potential peptide inhibitors of hypoxia inducible factor 1α causing breast cancer. J. Mol. Struct. 2019; 1177:558–563. https://doi.org/10.1016/j.molstruc.2018.09.072. DOI: https://doi.org/10.1016/j.molstruc.2018.09.072
Semenza G.L. Hypoxia-inducible factors: mediators ofcancer progression and targets for cancer therapy. Trends Pharmacol Sci. 2012; 33(4):207-214. DOI: https://doi.org/10.1016/j.tips.2012.01.005
Li X., Chen Y.T., Josson S., Mukhopadhyay N.K., Kim J., Freeman M.R. and Huang W.C. MicroRNA-185 and 342 inhibit tumorigenicity and induce apoptosis through blockade of the SREBP metabolic pathway in prostate cancer cells. PLoS One. 2013; 8(8):e70987. DOI: https://doi.org/10.1371/journal.pone.0070987
Chen I.T., et al. Characterization of p21Cip1/Waf1 peptide domains required for cyclin E/Cdk2 and PCNA interaction. Oncogene. 1996; 12(3):595–607.
Dorsam R.T. and Gutkind J.S. G-protein-coupled receptors and cancer. Nat Rev Cancer. 2007; 7(2):79–94. DOI: https://doi.org/10.1038/nrc2069
Afzal M., Alharbi K. S., Alruwaili N. K., Al-Abassi F. A., Al-Malki A. A. L., Kazmi I., and Anwar F. Nanomedicine in treatment of breast cancer–A challenge to conventional therapy. In Seminars in cancer biology. 2021; (69):279-292. DOI: https://doi.org/10.1016/j.semcancer.2019.12.016
Abu Dayyih W., Hailat M., Albtoush S., Albtoush E., Abu Dayah A., Alabbadi I. and Hamad M. F. Nanomedicine Advancements in Cancer Therapy: A Scientific Review. Jordan Journal of Pharmaceutical Sciences. 2014; 17(3). DOI: https://doi.org/10.35516/jjps.v17i3.2384
Ibraheem L. M. and Khattabi A. M. Studying the Effect of Functional Group and Size of Silica Nanoparticles Loaded with Quercetin on their in vitro Characteristics. Jordan Journal of Pharmaceutical Sciences. 2022; 15(4). DOI: https://doi.org/10.35516/jjps.v15i4.679
Kzar H. H., Al-Gazally M. E. and Wtwt M. A. Everolimus loaded NPs with FOL targeting: preparation, characterization and study of its cytotoxicity action on MCF-7 breast cancer cell lines. Jordan Journal of Pharmaceutical Sciences. 2022; 15(1). DOI: https://doi.org/10.35516/jjps.v15i1.286
Jafernik K., Ładniak A., Blicharska E., Czarnek K., Ekiert H., Wiącek A.E. and Szopa A. Chitosan-Based Nanoparticles as Effective Drug Delivery Systems-A review. Molecules. 2023; 28(4):1963.
doi: 10.3390/molecules28041963. DOI: https://doi.org/10.3390/molecules28041963
Herdiana Y., Wathoni N., Shamsuddin S., Joni I. M., and Muchtaridi M. Chitosan-Based Nanoparticles of Targeted Drug Delivery System in Breast Cancer Treatment. Polymers. 2021; 13(11):1717. https://doi.org/10.3390/polym13111717. DOI: https://doi.org/10.3390/polym13111717
Manimaran D., Elangovan N., Mani P., Subramanian K., Ali D., Alarifi S. and Kalirajan A. Isolongifolene-loaded chitosan nanoparticles synthesis and characterization for cancer treatment. Scientific Reports. 2022; 12(1):19250. https://doi.org/10.1038/s41598-022-23386-4. DOI: https://doi.org/10.1038/s41598-022-23386-4
Fukamachi K., Han B. S., Kim C. K., Takasuka N., Matsuoka Y., Matsuda E. and Tsuda H. Possible enhancing effects of atrazine and nonylphenol on 7, 12‐dimethylbenz [a] anthracene‐induced mammary tumor development in human c‐Ha‐ras proto‐oncogene transgenic rats. Cancer science. 2004; 95(5):404-410. DOI: https://doi.org/10.1111/j.1349-7006.2004.tb03223.x
McCormick D.L., Adamowski C.B., Fiks A. and Moon R.C. Lifetime dose-response relationships for mammary tumor induction by a single administration of Nmethyl- N-nitrosourea. Cancer Res. 1981; 41(5):1690-4.
Zhang X. X., Eden H. S. and Chen X. Peptides in cancer nanomedicine: drug carriers, targeting ligands and protease substrates. Journal of controlled release. 2012; 159(1):2-13. DOI: https://doi.org/10.1016/j.jconrel.2011.10.023
Chen K. and Chen X. Integrin targeted delivery of chemotherapeutics. Theranostics. 2011; 1:189-200. DOI: https://doi.org/10.7150/thno/v01p0189
Kaliaperumal J., Padarthi P., Elangovan N., and Hari N. Anti-tumorigenic effect of nano formulated peptide pACC1 by diminishing de novo lipogenisis in DMBA induced mammary carcinoma rat model. Biomedicine & Pharmacotherapy. 2014; 68(6):763-773. DOI: https://doi.org/10.1016/j.biopha.2014.07.016
Mirzaei S., Ranjbar B., Tackallou S. H. and Aref A. R. Hypoxia inducible factor-1α (HIF-1α) in breast cancer: The crosstalk with oncogenic and onco-suppressor factors in regulation of cancer hallmarks. Pathology, research and practice. 2023; 248:154676. https://doi.org/10.1016/j.prp.2023.154676. DOI: https://doi.org/10.1016/j.prp.2023.154676
Javier, Menendez J.A. and Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007; 7:763–777 DOI: https://doi.org/10.1038/nrc2222







