Exploring Anti-inflammatory Targets of Flavonoids through Integrated Molecular Docking and Network Pharmacology

Authors

  • Revati Thakre School of Pharmacy, Swami Ramanand Teertha Marathwada University, Nanded, India
  • Aarti More School of Pharmacy, Swami Ramanand Teertha Marathwada University, Nanded, India
  • Pradeep Deshmukh Department of Pharmacology, Loknete Appasaheb Rajale College of Pharmacy, Adinathnagar, Ahmednagar, India
  • Bhagwan Supekar Department of Chemistry, Saraswati Institute of Pharmacy, Pangri, Nanded, India.
  • Rajeshwar Kshirsagar 1School of Pharmacy, Swami Ramanand Teertha Marathwada University, Nanded, India
  • Vijay Navghare Department of Pharmacology, Indira College of Pharmacy, Nanded, India.
  • Pushpa Karale School of Pharmacy, Swami Ramanand Teertha Marathwada University, Nanded, India.

DOI:

https://doi.org/10.35516/jjps.v18i1.2713

Keywords:

Anti-inflammatory, Ferulic acid, Hesperidin, Molecular docking, Network Pharmacology, Quercetin, Rutin

Abstract

Inflammation is a complex physiological response associated with numerous diseases. Flavonoids, a class of natural compounds widely distributed in plants, have demonstrated promising anti-inflammatory properties. However, their comprehensive mechanisms of action and potential molecular targets remain indefinable. In the present study, we employed a network pharmacology approach combined with molecular docking to investigate the anti-inflammatory effects of some flavonoids. Initially, we collected and curated a comprehensive database such as ADMET parameters and targets from Swiss ADME, ADMET 2.O and Swiss target predication. We further constructed a protein-protein interaction network to identify key proteins involved in inflammation by using string database. Subsequently, we integrated the flavonoid dataset with the protein network to establish potential flavonoid-protein interactions by using Cytosacpe vina. The GO and KEGG enrichment analysis were done with the help of David database. Molecular docking was accomplished through Autodock Vina, and assessed the binding affinity of selected flavonoids towards the identified target proteins. The docking analysis provided insights into the specific interactions between flavonoids and target proteins, elucidating the potential mechanisms underlying their anti-inflammatory effects. The bioactive components ferulic acid, quercetin, rutin and hesperidin modulates many molecular and cellular processes and then exerts anti-inflammatory effects. From the analysis the key targets were participated in inflammatory bowel disease, IL 17 signaling pathway, TNF signaling pathway, cytokine-mediated signaling pathway, rheumatoid arthritis, lipopolysaccharides etc. Further molecular docking studies also revealed that binding affinity of selected flavonoids were higher than that of diclofenac.

References

Patil K. R., Mahajan U. B., Unger B. S., Goyal S. N., Belemkar S., Surana S. J. Animal models of inflammation for screening of anti-inflammatory drugs: Implications for the discovery and development of phytopharmaceuticals. International Journal of Molecular Sciences. 2019; 20(18): accepted manuscript. DOI: https://doi.org/10.3390/ijms20184367

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770891/

Dewanjee S., Dua T. K., Sahu R. Potential anti-inflammatory effect of Leea macrophylla Roxb. leaves: A wild edible plant. Food and Chemical Toxicology. 2013; 59: 514-520. DOI: https://doi.org/10.1016/j.fct.2013.06.038

Furman D., Campisi J., Verdin E., Carrera-Bastos P., Targ S., Franceschi C. Chronic inflammation in the etiology of disease across the life span. Nature Medicine. 2019; 25(12): 1822-1832. DOI: https://doi.org/10.1038/s41591-019-0675-0

Pahwa R. and Jialal I. Chronic inflammation. NIH.gov. StatPearls Publishing, 2019; Available from: https://www.ncbi.nlm.nih.gov/books/NBK493173/

Debnath S., Ghosh S., Hazra B. Inhibitory effect of Nymphaea pubescens Willd. flower extract on carrageenan-induced inflammation and CCl4-induced hepatotoxicity in rats. Food and Chemical Toxicology. 2013; 59: 485-491. DOI: https://doi.org/10.1016/j.fct.2013.06.036

Ren J., Ren M., Mo Z., Lei M. Study on anti-inflammatory mechanism of Angelica pubescens based on network pharmacology and molecular docking. Sage Journal. 2022; 18(1): 466-469.

Zhu N., Hou J. Molecular mechanism of the anti-inflammatory effects of Sophorae flavescentis Aiton identified by network pharmacology. Scientific Reports. 11(1). Available from: DOI: https://doi.org/10.1038/s41598-020-80297-y

https://www.nature.com/articles/s41598-020-80297-y.pdf?origin=ppub

Arakawa T., Higuchi K., Fukuda T., Fujiwara Y., Kobayashi K., Kuroki T. Prostaglandins in the stomach: an update. Journal of Clinical Gastroenterology.1998; 27: S1–11. DOI: https://doi.org/10.1097/00004836-199800001-00003

Bindu S., Mazumder S., Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochemical Pharmacology. 2020; 114147. DOI: https://doi.org/10.1016/j.bcp.2020.114147

Zhang Q., Li X, Li J., Hu Y., Liu J., Wang F. Mechanism of anti-inflammatory and antibacterial effects of qing xiao wu wei decoction based on network pharmacology, molecular docking and in vitro experiments. Frontiers in Pharmacology. 2021; 12. DOI: https://doi.org/10.3389/fphar.2021.678685

Mahdy A. M., Galley H. F., Abdel-Wahed M. A., el-Korny K. F., Sheta S. A., Webster N. R. Differential modulation of interleukin-6 and interleukin-10 by diclofenac in patients undergoing major surgery. British Journal of Anaesthesia. 2023; 797–802. Available from: https://pubmed.ncbi.nlm.nih.gov/12173196/ DOI: https://doi.org/10.1093/bja/88.6.797

Oguntibeju O. Medicinal plants with anti-inflammatory activities from selected countries and regions of Africa. Journal of Inflammation Research. 2018; 11: 307-317. Available from: DOI: https://doi.org/10.2147/JIR.S167789

http://europepmc.org/articles/PMC6086115

Panche A. N., Diwan A. D., Chandra S. R. Flavonoids: an overview. Journal of Nutritional Science. 2016; 5(e47). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465813/ DOI: https://doi.org/10.1017/jns.2016.41

Pietta P. G. Flavonoids as Antioxidants. Journal of Natural Products. 2000; 63(7): 1035–1042. DOI: https://doi.org/10.1021/np9904509

Kumar S., Pandey A. K. Chemistry and Biological Activities of Flavonoids: An Overview. The Scientific World Journal. 2013; 1–16. DOI: https://doi.org/10.1155/2013/162750

Ginwala R., Bhavsar R., Chigbu D. I., Jain P., Khan Z. K. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants. 2019; 8: 35. DOI: https://doi.org/10.3390/antiox8020035

Zhao S., Liu Z., Wang M., He D., Liu L., Shu Y. Anti-inflammatory effects of Zhishi and Zhiqiao revealed by network pharmacology integrated with molecular mechanism and metabolomics studies. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology. 2018; 50: 61–72. https://pubmed.ncbi.nlm.nih.gov/30466993/ DOI: https://doi.org/10.1016/j.phymed.2018.09.184

Xiang C., Liao Y., Chen Z., Xiao B., Zhao Z., Li A. Network pharmacology and molecular docking to elucidate the potential mechanism of Ligusticum chuanxiong against osteoarthritis. Frontiers in Pharmacology. 2022; 13: 854215. https://pubmed.ncbi.nlm.nih.gov/35496280/ DOI: https://doi.org/10.3389/fphar.2022.854215

Obaidullah A. J., Alanazi M. M., Alsaif N.A., Alanazi A.S., Albassam H. Network pharmacology- and molecular docking-based identification of potential phytocompounds from Argyreia capitiformis in the treatment of inflammation. Garg R, editor. Evidence-Based Complementary and Alternative Medicine. 2022; 1–22. DOI: https://doi.org/10.1155/2022/8037488

Dar A.M. and Mir S. Molecular docking: approaches, types, applications and basic challenges. Journal of Analytical & Bioanalytical Techniques. 2017; 08(02). DOI: https://doi.org/10.4172/2155-9872.1000356

Forli S., Huey R., Pique M.E., Sanner M.F., Goodsell D.S., Olson A. J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols. 2016; 11(5): 905-919. DOI: https://doi.org/10.1038/nprot.2016.051

Guan L., Yang H., Cai Y., Sun L., Li P. D. ADMET-score -a comprehensive scoring function for evaluation of chemical drug-likeness. Med Chem Comm. 2019; 10(1): 148-157. DOI: https://doi.org/10.1039/C8MD00472B

Luo W., Deng J., He J., Yin L., You R., Zhang L. Integration of molecular docking, molecular dynamics and network pharmacology to explore the multi-target pharmacology of fenugreek against diabetes. Journal of Cellular and Molecular Medicine. 2023; Available from: https://pubmed.ncbi.nlm.nih.gov/37257051/ DOI: https://doi.org/10.1111/jcmm.17787

Wang K., Wang Y., Yan J., Hou C., Zhong X., Zhao Y. Network pharmacology and molecular docking integrated strategy to the screening of active components and mechanisms of Stephaniae tetrandrae radix on breast cancer. Processess. 2022; 10(11): 2340. Available from: https://www.mdpi.com/2227-9717/10/11/2340 DOI: https://doi.org/10.3390/pr10112340

Gfeller D., Grosdidier A., Wirth M., Daina A., Michielin O., Zoete V. Swiss target prediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Research. 2014; 1: 42: 32-38. DOI: https://doi.org/10.1093/nar/gku293

https://academic.oup.com/nar/article/42/W1/W32/2435215#86861076

Zhang M., Yang J., Zhao X., Zhao Y., Zhu S. Network pharmacology and molecular docking study on the active ingredients of Qidengmingmu capsule for the treatment of diabetic retinopathy. Scientific Reports. 2021; 11(1): 7382. Available from: DOI: https://doi.org/10.1038/s41598-021-86914-8

https://www.nature.com/articles/s41598-021-86914-8

Tong T., Cheng B., Tie S., Zhan G., Ouyang D., Cao J. Exploring the mechanism of Epimedii folium and ginseng radix against vascular dementia based on network pharmacology and molecular docking analysis: pharmacological mechanisms of EH-PN for VD. Medicine. 2022; 101(47): e31969-31969. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704979 DOI: https://doi.org/10.1097/MD.0000000000031969

Raman K. Construction and analysis of protein–protein interaction networks. Automated Experimentation. 2010; 2(1): 1-2. DOI: https://doi.org/10.1186/1759-4499-2-2

Ren J., Ren M., Mo Z., Lei M. Study on anti-inflammatory mechanism of angelica pubescens based on network pharmacology and molecular docking. Sage journal. 2022; 18(1): 1934578X2211466–6. DOI: https://doi.org/10.1177/1934578X221146616

Wang C., Chen H., Ma S. T., Mao B. B., Chen Y., Xu H. N. A network pharmacology approach for exploring the mechanisms of Panax notoginseng saponins in ischaemic stroke. Evidence-Based Complementary and Alternative Medicine. 2021; 5582782. Available from: https://pubmed.ncbi.nlm.nih.gov/34434246 DOI: https://doi.org/10.1155/2021/5582782

Huang D. W., Sherman B. T., Tan Q., Kir J., Liu D., Bryant D. DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Research. 2007; 35(suppl 2): W169-175. DOI: https://doi.org/10.1093/nar/gkm415

Nandi A., Das A., Dey Y. N., Roy K. K. The abundant phytocannabinoids in rheumatoid arthritis: therapeutic targets and molecular processes identified using integrated bioinformatics and network pharmacology. Life. 2023; 13(3): 700. DOI: https://doi.org/10.3390/life13030700

Meng X. Y., Zhang H. X., Mezei M., Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Current Computer Aided-Drug Design. 2011; 7(2): 146-157. DOI: https://doi.org/10.2174/157340911795677602

Ferreira L., dos Santos R., Oliva G., Andricopulo A. Molecular docking and structure-based drug design strategies. Molecules. 2015; 20(7): 13384-13421. DOI: https://doi.org/10.3390/molecules200713384

Zhang Q., Li R., Liu J., Peng W., Gao Y., Wu C. In silico screening of anti-inflammatory constituents with good drug-like properties from twigs of Cinnamomum cassia based on molecular docking and network pharmacology. Tropical Journal of Pharmaceutical Research. 2021; 18(10): 2125-2131. DOI: https://doi.org/10.4314/tjpr.v18i10.18

Seeliger D., de Groot B. L. Ligand docking and binding site analysis with PyMOL and Autodock Vina. Journal of Computer-Aided Molecular Design. 2010; 24(5): 417-422. DOI: https://doi.org/10.1007/s10822-010-9352-6

Megha K. B., Joseph X., Akhil V., Mohanan P. V. Cascade of immune mechanism and consequences of inflammatory disorders. Phytomedicine. 2021; 91: 153712. Available from: DOI: https://doi.org/10.1016/j.phymed.2021.153712

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8373857

Vane J. R. and Botting R. M. Anti-inflammatory drugs and their mechanism of action. Inflammation Research: Journal of the European Histamine Research Society. 1998; 47(Suppl 2): S78-87. Available from: https://pubmed.ncbi.nlm.nih.gov/9831328 DOI: https://doi.org/10.1007/s000110050284

Barakat, A., Abu-Hameda, Y., Aljamal, S., Al Muhaissen, S., Bisharat, L., Birardi, A., & AlKhatib, H. S. Formulation and evaluation of controlled-release, carrageenan-based powder formulations filled into hard gelatin capsules. Jordan Journal of Pharmaceutical Sciences. 2023; 16(2): 474.

https://doi.org/10.35516/jjps.v16i2.1531 DOI: https://doi.org/10.35516/jjps.v16i2.1531

Maslov, O., Komisarenko, M., Kolisnyk, S., & Derymedvid, L. Evaluation of Anti-Inflammatory, Antioxidant Activities and Molecular Docking Analysis of Rubus idaeus Leaf Extract. Jordan Journal of Pharmaceutical Sciences, 2024; 17(1): 105-122. https://doi.org/10.35516/jjps.v17i1.1808 DOI: https://doi.org/10.35516/jjps.v17i1.1808

Abu-Darwish, D., Shibli, R., & Al-Abdallat, A. M. Phenolic Compounds and Antioxidant Activity of Chiliadenus montanus (Vhal.) Brullo. grown in vitro. Jordan Journal of Pharmaceutical Sciences, 2024; 17(3): 611-628. https://doi.org/10.35516/jjps.v17i3.2248. DOI: https://doi.org/10.35516/jjps.v17i3.2248

Leyva-López N., Gutierrez-Grijalva E., Ambriz-Perez D., Heredia J. Flavonoids as cytokine modulators: a possible therapy for inflammation-related diseases. International Journal of Molecular Sciences. 2016; 17(6): 921. DOI: https://doi.org/10.3390/ijms17060921

Zhang G., Li Q., Chen Q., Su S. Network Pharmacology: A New Approach for Chinese Herbal Medicine Research. Evidence-Based Complementary and Alternative Medicine. 2013; 1-9. DOI: https://doi.org/10.1155/2013/621423

Shannon P. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research. 2003; 13(11): 2498-2504. Available from: DOI: https://doi.org/10.1101/gr.1239303

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC403769/

Gandhi H., Worch R., Kurgonaite K., Hintersteiner M., Schwille P., Bokel C. Dynamics and interaction of interleukin-4 receptor subunits in living cells. Biophysical Journal. 2014; 107(11): 2515-2527. DOI: https://doi.org/10.1016/j.bpj.2014.07.077

Gaffen S. L. Structure and signalling in the IL-17 receptor family. Nature Reviews Immunology. 2009; 9(8): 556-567. DOI: https://doi.org/10.1038/nri2586

Ge Y., Huang M., Yao Y. Biology of Interleukin-17 and Its Pathophysiological Significance in Sepsis. Frontiers in Immunology. 2020; 11. Available from: DOI: https://doi.org/10.3389/fimmu.2020.01558

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7399097

Zenobia C., Hajishengallis G. Basic biology and role of interleukin-17 in immunity and inflammation. Periodontology. 2015; 69(1): 142-159. DOI: https://doi.org/10.1111/prd.12083

Lee S. H., Wonye J. K., Kim S.Y., Jung K., Cho M. L. Interferon-gamma regulates inflammatory cell death by targeting necroptosis in experimental autoimmune arthritis. Scientific Reports. 2017; 7(1): 31. DOI: https://doi.org/10.1038/s41598-017-09767-0

Ortiz L.A., Dutreil M., Fattman C., Pandey A. C., Torres G., Go K. Interleukin 1 receptor antagonist mediates the anti-inflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proceedings of the National Academy of Sciences of the United States of America. 2007; 104(26): 11002-11007. https://www.ncbi.nlm.nih.gov/pubmed/17569781 DOI: https://doi.org/10.1073/pnas.0704421104

Shouval D. S., Ouahed J., Biswas A., Goettel J.A., Horwitz B.H., Klein C. Interleukin 10 receptor signaling: master regulator of intestinal mucosal homeostasis in mice and humans. Advances in immunology. 2014; 122: 177-210. Available from: DOI: https://doi.org/10.1016/B978-0-12-800267-4.00005-5

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741283

Carey A. J., Tan C.K., Ulett G. C. Infection-induced IL-10 and JAK-STAT. JAK-STAT. 2012; 1(3): 159-167. DOI: https://doi.org/10.4161/jkst.19918

Schulke S. Induction of interleukin-10 producing dendritic cells as a tool to suppress allergen-specific T helper 2 responses. Frontiers in Immunology. 2018; 9. DOI: https://doi.org/10.3389/fimmu.2018.00455

Lawrence T. The nuclear factor NF-B pathway in inflammation. Cold Spring Harbor Perspectives in Biology. 2009; 1(6): 001651-1661. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882124 DOI: https://doi.org/10.1101/cshperspect.a001651

Zhang T., Ma C., Zhang Z., Zhang H., Hu H. NF‐κB signaling in inflammation and cancer. Med Comm. 2021; 2(4). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8706767 DOI: https://doi.org/10.1002/mco2.104

Rudensky A. Y. Regulatory T cells and FOXP3. Immunological Reviews. 2011; 241(1): 260-268. DOI: https://doi.org/10.1111/j.1600-065X.2011.01018.x

Downloads

Published

2025-03-25

How to Cite

Thakre, R., More, A., Deshmukh, P. ., Supekar, B., Kshirsagar, R., Navghare, V., & Karale, P. (2025). Exploring Anti-inflammatory Targets of Flavonoids through Integrated Molecular Docking and Network Pharmacology. Jordan Journal of Pharmaceutical Sciences, 18(1), 160–179. https://doi.org/10.35516/jjps.v18i1.2713

Issue

Section

Articles