A Recent Review of PLGA-PEG Hybrid Nanoparticles for Anticancer and Anti-Inflammatory Applications
DOI:
https://doi.org/10.35516/jjps.v18i1.2737Keywords:
Nanotechnology, PLGA NP, Medical application, Cancer, Anti-inflammatoryAbstract
Numerous synthetic polymers have been investigated to be used in nanomedicine over the past few decades, particularly in drug delivery systems. Necessitating properties including non-toxic, biodegradable, and biocompatible. Among these, polylactic-co-glycolic acid (PLGA) which stands out due to its complete biodegradability and ability to self-assemble into nanometric micelles. However, their large diameter (150–200 nm), poor stability in aqueous media, and their removal from the bloodstream by the liver and spleen hindering the in vivo treatments. Polyethylene glycol (PEG) is the most widely used polymer in drug delivery systems, and the first PEGylated product has been on the market for over 20 years. PEG has a stealth behavior; therefore, it will not be recognized by the immune system. Further, PEG is hydrophilic polymer that could stabilize nanoparticles through steric rather than ionic effects. In this review article, the important of utilizing PLGA-PEG nanoparticles as polymeric drug carriers has been revised and the advantages of employing PLGA-PEG copolymer to form stable and well-defined, nanoparticles for drug delivery applications have been summarized. Moreover, the review aimed to shed light on the various methods employed in their preparation. Additionally, recent advancements in PLGA-PEG copolymer preparations for anti-cancer and anti-inflammatory therapies, are discussed in detail. The other applications of PGA-PEG have been extensively reviewed in other publications. Therefore, it was not addressed in this review.
References
Swami, A., et al. Nanoparticles for targeted and temporally controlled drug delivery. 2012: p. 9-29. DOI: https://doi.org/10.1007/978-1-4614-2305-8_2
Nsairat, H., et al. Development and validation of reversed-phase-HPLC method for simultaneous quantification of fulvestrant and disulfiram in liposomes. Bioanalysis, 2023; 15(23): p. 1393-1405. DOI: https://doi.org/10.4155/bio-2023-0137
Lafi, Z., N. Aboalhaija, and F. Afifi. Ethnopharmacological importance of local flora in the traditional medicine of Jordan: (A mini review). Jordan Journal of Pharmaceutical Sciences, 2022; 15(1): p. 132-144. DOI: https://doi.org/10.35516/jjps.v15i1.300
Wulff-Perez, M., et al. In vitro duodenal lipolysis of lipid-based drug delivery systems studied by HPLC–UV and HPLC–MS. International Journal of Pharmaceutics, 2014; 465(1-2): p. 396-404. DOI: https://doi.org/10.1016/j.ijpharm.2014.02.027
Saucier-Sawyer, J.K., et al. Systemic delivery of blood–brain barrier-targeted polymeric nanoparticles enhances delivery to brain tissue. 2015; 23(7-8): p. 736-749. DOI: https://doi.org/10.3109/1061186X.2015.1065833
Abd Ellah, N.H. and S.A.J.E.o.o.d.d. Abouelmagd. Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. 2017; 14(2): p. 201-214. DOI: https://doi.org/10.1080/17425247.2016.1213238
Munef, A., Z. Lafi, and N. Shalan. Investigating anti-cancer activity of dual-loaded liposomes with thymoquinone and vitamin C. Therapeutic Delivery, 2024; 15(4): p. 267-278. DOI: https://doi.org/10.4155/tde-2023-0140
Zainab, L., T. Hiba, and A. Hanan. An updated assessment on anticancer activity of screened medicinal plants in Jordan: Mini review. Journal of Pharmacognosy and Phytochemistry, 2020; 9(5): p. 55-58. DOI: https://doi.org/10.22271/phyto.2020.v9.i5a.12423
George, A., P.A. Shah, and P.S.J.I.j.o.p. Shrivastav. Natural biodegradable polymers based nano-formulations for drug delivery: A review. 2019; 561: p. 244-264. DOI: https://doi.org/10.1016/j.ijpharm.2019.03.011
Mukherjee, C., et al. Recent Advances in Biodegradable Polymers–Properties, Applications and Future Prospects. 2023: p. 112068. DOI: https://doi.org/10.1016/j.eurpolymj.2023.112068
Alshaer, W., et al. Quality by design approach in liposomal formulations: Robust product development. Molecules, 2022; 28(1): p. 10. DOI: https://doi.org/10.3390/molecules28010010
Nsairat, H., et al. Impact of Nanotechnology on the Oral Delivery of Phyto-bioactive Compounds. Food Chemistry, 2023: p. 136438.
Patel, C.M., et al. Poly lactic glycolic acid (PLGA) as biodegradable polymer. 2010; 3(2): p. 353-360.
Makadia, H.K. and S.J.J.P. Siegel. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. 2011; 3(3): p. 1377-1397.
Lü, J.-M., et al. Current advances in research and clinical applications of PLGA-based nanotechnology. 2009; 9(4): p. 325-341. DOI: https://doi.org/10.1586/erm.09.15
Muthu, M.S., et al. PLGA nanoparticle formulations of risperidone: preparation and neuropharmacological evaluation. 2009; 5(3): p. 323-333. DOI: https://doi.org/10.1016/j.nano.2008.12.003
Knop, K., et al. Poly (ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. 2010; 49(36): p. 6288-6308. DOI: https://doi.org/10.1002/anie.200902672
Dingels, C. and H.J.H.M.S.Y.a.t.S.N.P.I. Frey. From Biocompatible to biodegradable: poly (ethylene glycol) s with predetermined breaking points. 2013: p. 167-190. DOI: https://doi.org/10.1007/12_2013_235
Cleveland, M.V., et al. New polyethylene glycol laxative for treatment of constipation in adults: a randomized, double-blind, placebo-controlled study. 2001; 94(5): p. 478-481. DOI: https://doi.org/10.1097/00007611-200194050-00006
Nsairat, H., et al. Impact of nanotechnology on the oral delivery of phyto-bioactive compounds. Food Chemistry, 2023; 424: p. 136438. DOI: https://doi.org/10.1016/j.foodchem.2023.136438
Alshaer, W., et al. Encapsulation of echinomycin in cyclodextrin inclusion complexes into liposomes: in vitro anti-proliferative and anti-invasive activity in glioblastoma. RSC Advances, 2019; 9(53): p. 30976-30988. DOI: https://doi.org/10.1039/C9RA05636J
Al Zubaidi Z.M., et al. Hyaluronic Acid–Coated Niosomes for Curcumin Targeted Delivery into Breast Cancer Cells. ChemistrySelect. 2024; 9(3):e202304649. DOI: https://doi.org/10.1002/slct.202304649
Sahu T., et al. Nanotechnology-Based Drug Delivery System: Current Strategies and Emerging Therapeutic Potential for Medical Science. 2021; 63:102487. DOI: https://doi.org/10.1016/j.jddst.2021.102487
Lafi Z., et al. Aptamer-Functionalized pH-Sensitive Liposomes for a Selective Delivery of Echinomycin into Cancer Cells. RSC Adv. 2021; 11(47):29164-29177. DOI: https://doi.org/10.1039/D1RA05138E
D’souza A.A., Shegokar R. Polyethylene Glycol (PEG): A Versatile Polymer for Pharmaceutical Applications. Eur. J. Pharm. Sci. 2016; 13(9):1257-1275. DOI: https://doi.org/10.1080/17425247.2016.1182485
Lafi Z., et al. Echinomycin: A Journey of Challenges. Jordan J. Pharm. Sci. 2023; 16(3). DOI: https://doi.org/10.35516/jjps.v16i3.918
Chen L., et al. Effects of Molecular Weight and Its Distribution of PEG Block on Micellization and Thermogellability of PLGA–PEG–PLGA Copolymer Aqueous Solutions. 2015; 48(11):3662-3671. DOI: https://doi.org/10.1021/acs.macromol.5b00168
Gref R., et al. Biodegradable Long-Circulating Polymeric Nanospheres. Science. 1994; 263(5153):1600-1603. DOI: https://doi.org/10.1126/science.8128245
Huh K.M., Cho Y.W., Park K.J.D.T. PLGA-PEG Block Copolymers for Drug Formulations. Drug Deliv. Technol. 2003; 3(5):42-44.
Cheng J., et al. Formulation of Functionalized PLGA-PEG Nanoparticles for In Vivo Targeted Drug Delivery. Biomaterials. 2007; 28(5):869-876.
Sánchez-López E., et al. Memantine Loaded PLGA PEGylated Nanoparticles for Alzheimer’s Disease: In Vitro and In Vivo Characterization. 2018; 16:1-16. DOI: https://doi.org/10.1186/s12951-018-0356-z
Hosseininasab S., et al. Retracted: Synthesis, Characterization, and In Vitro Studies of PLGA–PEG Nanoparticles for Oral Insulin Delivery. J. Control. Release. 2014; 84(3):307-315. DOI: https://doi.org/10.1111/cbdd.12318
Cheng J., et al. Formulation of Functionalized PLGA–PEG Nanoparticles for In Vivo Targeted Drug Delivery. Biomaterials. 2007; 28(5):869-876. DOI: https://doi.org/10.1016/j.biomaterials.2006.09.047
Khalil N.M., et al. Pharmacokinetics of Curcumin-Loaded PLGA and PLGA–PEG Blend Nanoparticles After Oral Administration in Rats. J. Pharm. Pharmacol. 2013; 101:353-360. DOI: https://doi.org/10.1016/j.colsurfb.2012.06.024
Andima M., et al. Evaluation of β-Sitosterol Loaded PLGA and PEG-PLA Nanoparticles for Effective Treatment of Breast Cancer: Preparation, Physicochemical Characterization, and Antitumor Activity. Nanomaterials. 2018; 10(4):232. DOI: https://doi.org/10.3390/pharmaceutics10040232
Beletsi A., Panagi Z., Avgoustakis K. Biodistribution Properties of Nanoparticles Based on Mixtures of PLGA with PLGA–PEG Diblock Copolymers. Int. J. Pharm. 2005; 298(1):233-241. DOI: https://doi.org/10.1016/j.ijpharm.2005.03.024
Afshari M., Derakhshandeh K., Hosseinzadeh L. Characterisation, Cytotoxicity, and Apoptosis Studies of Methotrexate-Loaded PLGA and PLGA-PEG Nanoparticles. J. Med. 2014; 31(3):239-245. DOI: https://doi.org/10.3109/02652048.2013.834991
Ali I., et al. Advances in Nanocarriers for Anticancer Drugs Delivery. 2016; 23(20):2159-2187. DOI: https://doi.org/10.2174/0929867323666160405111152
Rafiei P., Haddadi A.J. Docetaxel-Loaded PLGA and PLGA-PEG Nanoparticles for Intravenous Application: Pharmacokinetics and Biodistribution Profile. Int. J. Nanomedicine. 2017; p. 935-947.
Duceppe N., Tabrizian M.J. Advances in Using Chitosan-Based Nanoparticles for In Vitro and In Vivo Drug and Gene Delivery. Eur. J. Pharm. Sci. 2010; 7(10):1191-1207. DOI: https://doi.org/10.1517/17425247.2010.514604
Zhu G., Mallery S.R., Schwendeman S.P. Stabilization of Proteins Encapsulated in Injectable Poly (Lactide-Co-Glycolide). Nat. Biotechnol. 2000; 18(1):52-57. DOI: https://doi.org/10.1038/71916
Mallik A.K., et al. Poly (Lactic Acid)(PLA)-Based Nanosystems in Biomedical Applications. 2022; p. 63-89. DOI: https://doi.org/10.1002/9783527832095.ch20
Abudayah A.A.F. Implication of Nanotechnology for Pulmonary Delivery of Docetaxel. Jordan J. Pharm. Sci. 2023; 16(2):470-470. DOI: https://doi.org/10.35516/jjps.v16i2.1527
Rocha C.V., et al. PLGA-Based Composites for Various Biomedical Applications. Int. J. Mol. Sci. 2022; 23(4). DOI: https://doi.org/10.3390/ijms23042034
Al-Azzawi H., et al. Multifunctional Nanoparticles Recruiting Hyaluronic Acid Ligand and Polyplexes Containing Low Molecular Weight Protamine and ATP-Sensitive DNA Motif for Doxorubicin Delivery. J. Drug Deliv. Sci. Technol. 2022; 69:103169. DOI: https://doi.org/10.1016/j.jddst.2022.103169
Cao L.-B., Zeng S., Zhao W. Highly Stable PEGylated Poly (Lactic-Co-Glycolic Acid)(PLGA) Nanoparticles for the Effective Delivery of Docetaxel in Prostate Cancers. Nanoscale Res. Lett. 2016; 11(1):305. DOI: https://doi.org/10.1186/s11671-016-1509-3
Rafiei P., Haddadi A. Docetaxel-Loaded PLGA and PLGA-PEG Nanoparticles for Intravenous Application: Pharmacokinetics and Biodistribution Profile. Int. J. Nanomedicine. 2017; 12:935-947. DOI: https://doi.org/10.2147/IJN.S121881
Jin H., et al. EGFR-Targeting PLGA-PEG Nanoparticles as a Curcumin Delivery System for Breast Cancer Therapy. Nanoscale. 2017; 9(42):16365-16374. DOI: https://doi.org/10.1039/C7NR06898K
Gholizadeh S., et al. PLGA-PEG Nanoparticles for Targeted Delivery of the mTOR/PI3 Kinase Inhibitor Dactolisib to Inflamed Endothelium. Int. J. Pharm. 2018; 548(2):747-758. DOI: https://doi.org/10.1016/j.ijpharm.2017.10.032
Fathi Karkan S., Davaran S., Akbarzadeh A. Cisplatin-Loaded Superparamagnetic Nanoparticles Modified with PCL-PEG Copolymers as a Treatment of A549 Lung Cancer Cells. Nanomedicine Res. J. 2019; 4(4):209-219.
Wani S.U.D., et al. A Review on Nanoparticles Categorization, Characterization, and Applications in Drug Delivery Systems. Vibrational Spectroscopy. 2022; 121:103407. DOI: https://doi.org/10.1016/j.vibspec.2022.103407
Amirsaadat S., et al. Metformin and Silibinin Co-Loaded PLGA-PEG Nanoparticles for Effective Combination Therapy Against Human Breast Cancer Cells. J. Drug Deliv. Sci. Technol. 2021; 61:102107.
Fahmy S.A., et al. PLGA/PEG Nanoparticles Loaded with Cyclodextrin-Peganum Harmala Alkaloid Complex and Ascorbic Acid with Promising Antimicrobial Activities. Pharmaceutics. 2022; 14(1):142. DOI: https://doi.org/10.3390/pharmaceutics14010142
Minh N.H., et al. Stability of Soluble Honokiol Loaded PLGA-PEG Nanoparticles Under Normal and Accelerated-Aging Conditions. Adv. Nat. Sci. Nanoscience Nanotechnol. 2023; 14(3):035004. DOI: https://doi.org/10.1088/2043-6262/ace3b9
Watcharadulyarat N., et al. PEG-PLGA Nanoparticles for Encapsulating Ciprofloxacin. Sci. Rep. 2023; 13(1):266. DOI: https://doi.org/10.1038/s41598-023-27500-y
Ramôa A.M., et al. Antimicrobial Peptide-Grafted PLGA-PEG Nanoparticles to Fight Bacterial Wound Infections. Biomater. Sci. 2023; 11(2):499-508. DOI: https://doi.org/10.1039/D2BM01127A
Jafari-Gharabaghlou D., et al. Potentiation of Folate-Functionalized PLGA-PEG Nanoparticles Loaded with Metformin for the Treatment of Breast Cancer: Possible Clinical Application. 2023; 50(4):3023-3033. DOI: https://doi.org/10.1007/s11033-022-08171-w
Amirsaadat S., et al. Metformin and Silibinin Co-Loaded PLGA-PEG Nanoparticles for Effective Combination Therapy Against Human Breast Cancer Cells. 2021; 61:102107. DOI: https://doi.org/10.1016/j.jddst.2020.102107
Khaledi S., et al. Preparation and Characterization of PLGA-PEG-PLGA Polymeric Nanoparticles for Co-Delivery of 5-Fluorouracil and Chrysin. 2020; 31(9):1107-1126. DOI: https://doi.org/10.1080/09205063.2020.1743946
Dhar S., et al. Targeted Delivery of Cisplatin to Prostate Cancer Cells by Aptamer Functionalized Pt (IV) Prodrug-PLGA-PEG Nanoparticles. 2008; 105(45):17356-17361. DOI: https://doi.org/10.1073/pnas.0809154105
Farokhzad O.C., et al. Targeted Nanoparticle-Aptamer Bioconjugates for Cancer Chemotherapy In Vivo. 2006; 103(16):6315-6320. DOI: https://doi.org/10.1073/pnas.0601755103
Fekri Aval S., et al. Gene Silencing Effect of SiRNA-Magnetic Modified with Biodegradable Copolymer Nanoparticles on hTERT Gene Expression in Lung Cancer Cell Line. Artif Cells Nanomed Biotechnol. 2016; 44(1):188-193. DOI: https://doi.org/10.3109/21691401.2014.934456
Vij N. Synthesis and Evaluation of Airway-Targeted PLGA-PEG Nanoparticles for Drug Delivery in Obstructive Lung Diseases. In: Nanoparticles in Biology and Medicine: Methods and Protocols. Springer, 2020; 147-154.
Vij N., et al. Neutrophil Targeted Nano-Drug Delivery System for Chronic Obstructive Lung Diseases. 2016; 12(8):2415-2427. DOI: https://doi.org/10.1016/j.nano.2016.06.008
Galindo-Camacho R.M., et al. Cell Penetrating Peptides-Functionalized Licochalcone-A-Loaded PLGA Nanoparticles for Ocular Inflammatory Diseases: Evaluation of In Vitro Anti-Proliferative Effects, Stabilization by Freeze-Drying and Characterization of an In-Situ Forming Gel. Int. J. Pharm. 2023; 639:122982. DOI: https://doi.org/10.1016/j.ijpharm.2023.122982
Palacio J., et al. Preparation and Evaluation of PLGA-PEG/Gusperimus Nanoparticles as a Controlled Delivery Anti-Inflammatory Drug. 2022; 77:103889.
Li Z., et al. Prevention of Oxidized Low-Density Lipoprotein-Induced Endothelial Cell Injury by DA-PLGA-PEG-cRGD Nanoparticles Combined with Ultrasound. 2017; 18(4):815. DOI: https://doi.org/10.3390/ijms18040815
Mohan L.J., et al. Optimising PLGA-PEG Nanoparticle Size and Distribution for Enhanced Drug Targeting to the Inflamed Intestinal Barrier. Pharmaceutics. 2020; 12(11). DOI: https://doi.org/10.3390/pharmaceutics12111114
Ismail J., et al. PEG-Lipid-PLGA Hybrid Particles for Targeted Delivery of Anti-Inflammatory Drugs. Pharmaceutics. 2024; 16(2). DOI: https://doi.org/10.3390/pharmaceutics16020187
Palacio J., et al. Preparation and Evaluation of PLGA-PEG/Gusperimus Nanoparticles as a Controlled Delivery Anti-Inflammatory Drug. J. Drug Deliv. Sci. Technol. 2022; 77:103889. DOI: https://doi.org/10.1016/j.jddst.2022.103889
Vij N. Synthesis and Evaluation of Airway-Targeted PLGA-PEG Nanoparticles for Drug Delivery in Obstructive Lung Diseases. Methods Mol Biol. 2020; 2118:147-154. DOI: https://doi.org/10.1007/978-1-0716-0319-2_11
Galindo R., et al. Development of Peptide Targeted PLGA-PEGylated Nanoparticles Loading Licochalcone-A for Ocular Inflammation. Pharmaceutics. 2022; 14(2):285. DOI: https://doi.org/10.3390/pharmaceutics14020285
Wang J., et al. Prophylactic and Therapeutic Potential of Magnolol-Loaded PLGA-PEG Nanoparticles in a Chronic Murine Model of Allergic Asthma. Front. Bioeng. Biotechnol. 2023; 11:1182080. DOI: https://doi.org/10.3389/fbioe.2023.1182080
Peng K.T., et al. Treatment of Osteomyelitis with Teicoplanin-Encapsulated Biodegradable Thermosensitive Hydrogel Nanoparticles. Biomaterials. 2010; 31(19):5227-5236. DOI: https://doi.org/10.1016/j.biomaterials.2010.03.027
Cao H., et al. Effects of rAmb a 1-Loaded PLGA-PEG Nanoparticles in a Murine Model of Allergic Conjunctivitis. Molecules. 2022; 27(3). DOI: https://doi.org/10.3390/molecules27030598
Dave V., et al. PEG-PLGA-Hybrid Nanoparticles Loaded with Etoricoxib-Phospholipid Complex for Effective Treatment of Inflammation in Rat Model. J. Microencapsulation. 2019; 36(3):236-249. DOI: https://doi.org/10.1080/02652048.2019.1617362
Danhier F., et al. PLGA-Based Nanoparticles: An Overview of Biomedical Applications. J. Control. Release. 2012; 161(2):505-522. DOI: https://doi.org/10.1016/j.jconrel.2012.01.043
Makadia H.K., Siegel S.J. Poly Lactic-Co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers. 2011; 3(3):1377-1397. DOI: https://doi.org/10.3390/polym3031377
Ishida T., Kiwada H. Accelerated Blood Clearance (ABC) Phenomenon Upon Repeated Injection of PEGylated Liposomes. Int. J. Pharm. 2008; 354(1-2):56-62. DOI: https://doi.org/10.1016/j.ijpharm.2007.11.005
Brigger I., Dubernet C., Couvreur P. Nanoparticles in Cancer Therapy and Diagnosis. Adv. Drug Deliv. Rev. 2012; 64:24-36. DOI: https://doi.org/10.1016/j.addr.2012.09.006