Polypharmacy in Type 2 Diabetes Patients of the PROLANIS Program in Indonesia: Identification of Potential Drug-Drug Interaction
DOI:
https://doi.org/10.35516/jjps.v18i1.2783Keywords:
drug-drug interactions, polypharmacy, prolanis, type 2 diabetesAbstract
The identification of potential drug-drug interactions (pDDIs) becomes critical in evaluating medication safety among diabetes mellitus patients. This study aimed to identify the pDDIs of polypharmacy in type 2 diabetes mellitus (T2D) patients of the Chronic Disease Management Program or Program Pengelolaan Penyakit Kronis (PROLANIS) Program. The T2D patients aged ≥18 were selected consecutively. A total sample of prescriptions containing ≥5 drugs was included. The mean age of patients was 62.70 ± 9.85 years (range 24–92 years), 62% were elderly, and 56.8% were females. Polypharmacy prescriptions were most prevalent in the Internal Medicine Department (92.8%). Of the 250 prescriptions, approximately 78.4% contained at least one pDDI. A total of 515 pDDIs were identified, with a median of 2 pDDIs per patient. Of these, 89.7% were of moderate severity. The drug pairs involved in moderate-severity pDDIs were glimepiride-metformin, glimepiride-bisoprolol, and metformin-ramipril. The number of drugs per prescription is a significant predictor of pDDIs (aOR = 7.48; 95% CI = 1.73-32.32). Subsequent analysis revealed that prescriptions containing eight or more drugs were 4.31 times more likely to have more than five pDDIs (p=0.010). Pharmacists must play a pivotal role in managing chronic disease medication to reduce drug interaction risks. This study suggests developing a digital system for healthcare professionals to improve patient medication safety.
References
Halli-Tierney AD, Scarbrough C, Carroll D. Polypharmacy: Evaluating Risks and Deprescribing. Am Fam Physician. 2019; 100(1): 32-38.
Guillot J, Maumus-Robert S, Bezin J. Polypharmacy: A general review of definitions, descriptions and determinants. Therapies. 2020; 75(5): 407-416. doi:10.1016/j.therap.2019.10.001 DOI: https://doi.org/10.1016/j.therap.2019.10.001
WHO. Medication Safety in Polypharmacy. Published online 2019. Accessed May 17, 2023. https://www.who.int/publications/i/item/WHO-UHC-SDS-2019.11
Hsein L, Srour S. Potential Drug-Drug Interactions and their Associated Factors at the University Children’s Hospital in Syria: A Cross-Sectional Study. Jordan Journal of Pharmaceutical Sciences. 2024; 17(1). DOI: https://doi.org/10.35516/jjps.v17i1.1606
Triplitt C. Drug Interactions of Medications Commonly Used in Diabetes. Diabetes Spectrum. 2006; 19(4): 202-211. doi:10.2337/diaspect.19.4.202 DOI: https://doi.org/10.2337/diaspect.19.4.202
Siddiqua A, Abdullah RK, Kareem NA. Impact of Clinical Pharmacist Intervention towards Polypharmacy in Elderly population-A Systematic Study. Rese Jour of Pharm and Technol. 2019; 12(6): 2621. doi:10.5958/0974-360X.2019.00439.6 DOI: https://doi.org/10.5958/0974-360X.2019.00439.6
Kwak MJ, Chang M, Chiadika S, et al. Healthcare Expenditure Associated With Polypharmacy in Older Adults With Cardiovascular Diseases. The American Journal of Cardiology. 2022; 169: 156-158. doi:10.1016/j.amjcard.2022.01.012 DOI: https://doi.org/10.1016/j.amjcard.2022.01.012
Rochon PA, Petrovic M, Cherubini A, et al. Polypharmacy, inappropriate prescribing, and deprescribing in older people: through a sex and gender lens. The Lancet Healthy Longevity. 2021; 2(5): e290-e300. doi:10.1016/S2666-7568(21)00054-4 DOI: https://doi.org/10.1016/S2666-7568(21)00054-4
Hughes CM. One size fits all? How to optimize the prescribing of appropriate polypharmacy in chronic diseases, using a behavioral approach – a United Kingdom perspective. Expert Review of Clinical Pharmacology. 2022; 15(5): 497-499.
doi:10.1080/17512433.2022.2094767 DOI: https://doi.org/10.1080/17512433.2022.2094767
Humza AU, Siddiq A, Baig SG, Ali A, Ahmed I, Yousuf JB. Assessment of QTc-interval Prolonging Medication Utilization and Associated Potential Drug-Drug Interactions in Hospitalized Cardiac Patients: A Cross-Sectional Study in Cardiology. Jordan Journal of Pharmaceutical Sciences. 2024; 17(3). DOI: https://doi.org/10.35516/jjps.v17i3.2136
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice. 2019; 157:107843. doi:10.1016/j.diabres.2019.107843 DOI: https://doi.org/10.1016/j.diabres.2019.107843
Himanshu D, Ali W, Wamique M. Type 2 diabetes mellitus: pathogenesis and genetic diagnosis. J Diabetes Metab Disord. 2020; 19(2): 1959-1966. doi:10.1007/s40200-020-00641-x DOI: https://doi.org/10.1007/s40200-020-00641-x
Soeatmadji DW, Rosandi R, Saraswati MR, Sibarani RP, Tarigan WO. Clinicodemographic Profile and Outcomes of Type 2 Diabetes Mellitus in the Indonesian Cohort of DISCOVER: A 3-Year Prospective Cohort Study. JAFES. 2023; 38(1): 68-74. doi:10.15605/jafes.038.01.10 DOI: https://doi.org/10.15605/jafes.038.01.10
Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R. Type 2 Diabetes and its Impact on the Immune System. CDR. 2020; 16(5): 442-449.
doi:10.2174/1573399815666191024085838 DOI: https://doi.org/10.2174/1573399815666191024085838
Sonu S, Sharma G, Harikumar Sl, Navis S. A Review on Drug-Drug and Drug-Food Interactions in Patients During the Treatment of Diabetes Mellitus. IJPCS. 2016; 4(4): 98-105. doi:10.5530/ijpcs.4.4.6 DOI: https://doi.org/10.5530/ijpcs.4.4.6
Yosef B, Kaddar N, Boubou A. Evaluation of the Effect of Dapagliflozin on CRP Levels in Type 2 Diabetes Patients. Jordan Journal of Pharmaceutical Sciences. 2023; 16(2). DOI: https://doi.org/10.35516/jjps.v16i2.1331
Nowakowska M, Zghebi SS, Ashcroft DM, et al. The comorbidity burden of type 2 diabetes mellitus: patterns, clusters and predictions from a large English primary care cohort. BMC Med. 2019; 17(1): 145. doi:10.1186/s12916-019-1373-y DOI: https://doi.org/10.1186/s12916-019-1373-y
Rachmawati S, Prihhastuti-Puspitasari H, Zairina E. The implementation of a chronic disease management program (Prolanis) in Indonesia: a literature review. Journal of Basic and Clinical Physiology and Pharmacology. 2019; 30(6): 20190350.
doi:10.1515/jbcpp-2019-0350 DOI: https://doi.org/10.1515/jbcpp-2019-0350
Alkaff FF, Illavi F, Salamah S, et al. The Impact of the Indonesian Chronic Disease Management Program (PROLANIS) on Metabolic Control and Renal Function of Type 2 Diabetes Mellitus Patients in Primary Care Setting. J Prim Care Community Health. 2021; 12:215013272098440. doi:10.1177/2150132720984409 DOI: https://doi.org/10.1177/2150132720984409
Yusransyah Y, Halimah E, Suwantika AA. Measurement of the Quality of Life of Prolanis Hypertension Patients in Sixteen Primary Healthcare Centers in Pandeglang District, Banten Province, Indonesia, Using EQ-5D-5L Instrument. PPA. 2020; Volume 14:1103-1109. doi:10.2147/PPA.S249085 DOI: https://doi.org/10.2147/PPA.S249085
Yusransyah, Halimah E, Suwantika AA. Optimal scenario of antihypertension’s cost-effectiveness in Prolanis hypertension patients: A case study of Pandeglang District, Indonesia. Pharm Educ. 2022; 22(2): 85-91. doi:10.46542/pe.2022.222.8591 DOI: https://doi.org/10.46542/pe.2022.222.8591
Akbar Z, Rehman S, Khan A, Khan A, Atif M, Ahmad N. Potential drug–drug interactions in patients with cardiovascular diseases: findings from a prospective observational study. J of Pharm Policy and Pract. 2021; 14(1): 63. doi:10.1186/s40545-021-00348-1 DOI: https://doi.org/10.1186/s40545-021-00348-1
Rubina SS, Anuba P, Swetha B, Kalala KP, Aishwarya P, Sabarathinam S. Drug interaction risk between cardioprotective drugs and drugs used in treatment of COVID-19: A evidence-based review from six databases. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2022; 16(3): 102451.
doi:10.1016/j.dsx.2022.102451 DOI: https://doi.org/10.1016/j.dsx.2022.102451
Suriyapakorn B, Chairat P, Boonyoprakarn S, et al. Comparison of potential drug-drug interactions with metabolic syndrome medications detected by two databases. Mogi M, ed. PLoS ONE. 2019; 14(11): e0225239. doi:10.1371/journal.pone.0225239 DOI: https://doi.org/10.1371/journal.pone.0225239
Hammar T, Hamqvist S, Zetterholm M, Jokela P, Ferati M. Current Knowledge about Providing Drug–Drug Interaction Services for Patients—A Scoping Review. Pharmacy. 2021; 9(2): 69.
doi:10.3390/pharmacy9020069 DOI: https://doi.org/10.3390/pharmacy9020069
Abdelkawy K, Kharouba M, Shendy K, et al. Prevalence of Drug–Drug Interactions in Primary Care Prescriptions in Egypt: A Cross-Sectional Retrospective Study. Pharmacy. 2023; 11(3): 106.
doi:10.3390/pharmacy11030106 DOI: https://doi.org/10.3390/pharmacy11030106
Mikhael EM, Hassali MA, Hussain SA, Mustafa MY. Assessment of Pharmacist’s Role in Counselling and Educating Diabetic Patients about Insulin Therapy. Int Res J Pharm. 2018; 9(7): 65-68. doi:10.7897/2230-8407.097127 DOI: https://doi.org/10.7897/2230-8407.097127
Hosen Z, Saha D, Khanam UH, et al. Evaluation of Drug-Drug Interaction in a Patient Drugs Profile with Multiple Complicacy and Patient Management. Research Journal of Pharmacy and Technology. 2012; 5(6).
Rendrayani F, Alfian SD, Wahyudin W, Puspitasari IM. Pharmacists’ Knowledge, Attitude, and Practice of Medication Therapy Management: A Systematic Review. Healthcare. 2022; 10(12): 2513.
doi:10.3390/healthcare10122513 DOI: https://doi.org/10.3390/healthcare10122513
Das S, Behera S, Xavier A, Dharanipragada S, Selvarajan S. Are drug-drug interactions a real clinical concern? Perspect Clin Res. 2019; 10(2): 62.
doi:10.4103/picr.PICR_55_18 DOI: https://doi.org/10.4103/picr.PICR_55_18
Saibi Y, Hasan D, Shaqila V. Potensi Interaksi Obat pada Pasien Diabetes Melitus Tipe 2 di Rumah Sakit X Tangerang Selatan. Jurnal Manajemen dan Pelayanan Farmasi. 2018; 8(3): 100-104. DOI: https://doi.org/10.22146/jmpf.34027
Trevisan DD, Silva JB, Póvoa VC, et al. Prevalence and clinical significance of potential drug-drug interactions in diabetic patients attended in a tertiary care outpatient center, Brazil. Int J Diabetes Dev Ctries. 2016; 36(3): 283-289. doi:10.1007/s13410-015-0428-7 DOI: https://doi.org/10.1007/s13410-015-0428-7
Cahyaningsih I, Wicaksono WA. Penilaian Risiko Interaksi Obat pada Pasien dengan Diabetes Melitus Tipe 2. ijcp. 2020; 9(1): 9. doi:10.15416/ijcp.2020.9.1.9 DOI: https://doi.org/10.15416/ijcp.2020.9.1.9
Sahay RK, Mittal V, Gopal GR, et al. Glimepiride and Metformin Combinations in Diabetes Comorbidities and Complications: Real-World Evidence. Cureus. Published online September 28, 2020. doi:10.7759/cureus.10700 DOI: https://doi.org/10.7759/cureus.10700
May M, Schindler C. Clinically and pharmacologically relevant interactions of antidiabetic drugs. Therapeutic Advances in Endocrinology. 2016; 7(2): 69-83.
doi:10.1177/2042018816638050 DOI: https://doi.org/10.1177/2042018816638050
Liang LR, Ma Q, Feng L, Qiu Q, Zheng W, Xie WX. Long-term effect of clopidogrel in patients with and without diabetes: A systematic review and meta-analysis of randomized controlled trials. WJD. 2020; 11(4): 137-149. doi:10.4239/wjd.v11.i4.137 DOI: https://doi.org/10.4239/wjd.v11.i4.137
Nurlaelah I, Mukaddas A, Faustine I. Kajian Interaksi Obat pada Pengobatan Diabetes Melitus (DM) dengan Hipertensi di Instalasi Rawat Jalan RSUD Undata Periode Maret-Juni Tahun 2014. JFG. 2015; 1(1): 35-41. doi:10.22487/j24428744.2015.v1.i1.4833 DOI: https://doi.org/10.22487/j24428744.2015.v1.i1.4833
Itkonen M. Clinical Studies on Pharmacokinetic Drug-Drug Interactions Caused by Clopidogrel : Focus on CYP2C8-Mediated Drug Metabolism. Doctoral Thesis. University of Helsinki; 2019.
Wang H, Peng J, Wang B, et al. Inconsistency Between Univariate and Multiple Logistic Regressions. Shanghai Arch Psychiatry. 2017; 29(2): 124-128.
doi:10.11919/j.issn.1002-0829.217031
Lisni I, Lestari K, Rizka Andalusia L, Rahmawati D. Utilization of Expert Systems as a Source of Information in Detecting Drug Interactions in the Treatment of Diabetes Mellitus Patients: A Systematic Literature Review. RJPT. Published online January 27, 2023:328-332. doi:10.52711/0974-360X.2023.00058 DOI: https://doi.org/10.52711/0974-360X.2023.00058
Ibrahim M, Baker J, Cahn A, et al. Hypoglycaemia and its management in primary care setting. Diabetes Metabolism Res. 2020; 36(8): e3332. doi:10.1002/dmrr.3332 DOI: https://doi.org/10.1002/dmrr.3332
Upadhyay DK, Palaian S, Mishra P, Shankar PR, Anil SK, Bista D. Pattern of potential drug-drug interactions in diabetic out-patients in a Tertiary Care Teaching Hospital in Nepal. The Medical journal of Malaysia. 2007; 62(4): 294-298.
Murtaza G, Khan MYG, Azhar S, Khan SA, Khan TM. Assessment of potential drug–drug interactions and its associated factors in the hospitalized cardiac patients. Saudi Pharmaceutical Journal. 2016; 24(2): 220-225. doi:10.1016/j.jsps.2015.03.009 DOI: https://doi.org/10.1016/j.jsps.2015.03.009
Sinuraya RK, Aini AN, Rahayu C, Wathoni N, Abdulah R. The Effectiveness of Postoperative Antibiotics following Appendectomy in Pediatric Patients: A Cost Minimization Analysis. TOPHJ. 2020; 13(1): 80-86. doi:10.2174/1874944502013010080 DOI: https://doi.org/10.2174/1874944502013010080
Siddiqui D e S. Role of healthcare professionals in drug-drug interactions and clinical interventions. European Journal of Clinical and Experimental Medicine. 2023; 21(1): 81-89. doi:10.15584/ejcem.2023.1.11 DOI: https://doi.org/10.15584/ejcem.2023.1.11
Barata J, Maia F, Mascarenhas A. Digital transformation of the mobile connected pharmacy: a first step toward community pharmacy 5.0. Informatics for Health and Social Care. 2022; 47(4): 347-360.
doi:10.1080/17538157.2021.2005603 DOI: https://doi.org/10.1080/17538157.2021.2005603