Network Pharmacology of Plumbagin for the Treatment of Psoriasis

Authors

  • Mitayani Purwoko Universitas Muhammadiyah Palembang
  • Trisnawati Mundijo Universitas Muhammadiyah Palembang
  • Yesi Astri Universitas Muhammadiyah Palembang
  • Siti Rohani Universitas Muhammadiyah Palembang

DOI:

https://doi.org/10.35516/jjps.v18i4.3091

Keywords:

Bio-informatics; Network Pharmacology; Psoriasis; Plumbagin

Abstract

Background: Psoriasis skin disease brings attention to pharmacology studies; many traditional medicines from plants are defined as promising candidates for this disease treatment. Plumbagin is one candidate that has been proven for several decades for these issues.

Methods: The potency of Plumbagin as an anti-psoriasis treatment was analyzed using WAY2DRUG PASS Prediction. Target proteins prediction was analyzed using Pass Protein Target, DIGEP-Pred, and Comparative Toxicogenomic Database. Targets related to  Psoriasis were obtained from The Human Gene Database Genecards, Open Target, and PharmGKB. The JVENN tol was used to visualize the Venn Diagram. Protein-protein interaction was analyzed using STRING DB V.12 and the filtered by Cytoscape V.10.1. Functional annotation was analyzed using DAVID. 

Results: Plumbagin can target proteins interacting with Psoriasis-related proteins such as TP53, CASP3, MAPK3, TNF, AKT1, STAT3, MAPK8, NFKB1, ESR1, and EP300.

Conclusions: Plumbagin has good potential as an anti-psoriasis agent.

Author Biographies

Trisnawati Mundijo, Universitas Muhammadiyah Palembang

Faculty of Medicine

Yesi Astri, Universitas Muhammadiyah Palembang

Faculty of Medicine

Siti Rohani, Universitas Muhammadiyah Palembang

Faculty of Medicine

References

Chan T, Hawkes J, Krueger J. Interleukin 23 in The Skin: Role in Psoriasis Pathogenesis and Selective Interleukin 23 Blockade as Treatment. Ther Adv Chronic Dis. 2018;9(5):111–9.

Czarnecka-Operacz M, Sadowska-Przytocka A. The Possibilities and Principles of Methotrexate Treatment of Psoriasis: the Updated Knowledge. Postep Dermatologii i Alergol. 2014;31(6):392–400.

Frieder J, Kivelevitch D, Haugh I, Watson I, Menter A. Anti-IL-23 and anti-IL-17 biologic agents for the treatment of immune-mediated inflammatory conditions. Clin Pharmacol Ther. 2017;103(1):88–101.

Sundari B, Telapolu S, Dwarakanath B, Thyagarajan S. Cytotoxic and Antioxidant Effects in Various Tissue Extracts of Plumbago zeylanica: Implications for Anticancer Potential. Pharmacogn J. 2017;9(5):706–12.

Ito C, Matsui T, Takano M, Wu T, Itoigawa M. Anti-Cell Proliferation Effect of Naphthoquinone Dimers Isolated from Plumbago zeylanica. Nat Prod Res. 2018;32(18):2127–32.

Wei Y, Lin Y, Chen W, Liu S, Jin L, Huang D. Computational and In Vitro Analysis of Plumbagin’s Molecular Mechanism for the Treatment of Hepatocellular Carcinoma. Front Pharmacol. 2021;12:594833.

Purwoko M, Indarto D, Kariosentono H, Purwanto B, Soetrisno S, Cilmiaty R. Chloroform extract of Plumbago zeylanica Linn. roots ameliorates the epidermal thickness of Imiquimod-induced psoriatic mice through cell cycle and apoptosis. Open Access Maced J Med Sci. 2022;10(B):1129–36.

Filimonov DA, Lagunin AA, Gloriozova TA, Rudik A V., Druzhilovskii DS, Pogodin P V., et al. Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chem Heterocycl Compd. 2014;50:444–57.

Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr Protoc Bioinforma. 2016;54:1.30.1-1.30.33.

Ochoa D, Hercules A, Carmona M, Suveges D, Baker J, Malangone C, et al. The next-generation Open Targets Platform: reimagined, redesigned, rebuilt. Nucleic Acids Res. 2023;51(D1):D1353–9.

Whirl-Carrillo M, Huddart R, Gong L, Sangkuhl K, Thorn CF, Whaley R, et al. An Evidence-Based Framework for Evaluating Pharmacogenomics Knowledge for Personalized Medicine. Clin Pharmacol Ther. 2021;110(3):563–72.

Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. jvenn: an interactive Venn diagram viewer. BMC Bioinformatics. 2014;15(2014):293.

Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638–46.

Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50(W1):W216–21.

Baran W, Szepietowski JC, Szybejko-Machaj G. Expression of p53 protein in psoriasis. Acta Dermatovenerologica Alp Panon Adriat. 2005;14(3):79.

Kim S, Ryu YW, Kwon JI, Choe MS, Jung JW, Cho JW. Differential expression of cyclin D1, Ki 67, pRb, and p53 in psoriatic skin lesions and normal skin. Mol Med Rep. 2018;17(1):735–42.

Ashtiani M, Mirzaie M, Jafari M. CINNA: an R/CRAN package to decipher central informative nodes in network analysis. Bioinformatics. 2018:1-2 2018

Li B, Lei J, Yang L, Gao C, Dang E, Cao T, et al. Dysregulation of akt-FOXO1 pathway leads to dysfunction of regulatory T cells in patients with psoriasis. J Invest Dermatol. 2019;139(10):2098–107.

Zhang M, Zhang X. The role of PI3K/AKT/FOXO signaling in psoriasis. Arch Dermatol Res. 2019;311:83–91.

Andrés RM, Montesinos MC, Navalón P, Payá M, Terencio MC. NF-κB and STAT3 inhibition as a therapeutic strategy in psoriasis: In vitro and in vivo effects of BTH. J Invest Dermatol. 2013;133(10):2632–2371.

Ovcina-Kurtovic N, Kasumagic-Halilovic E. Serum Levels of Tumor Necrosis Factor - alpha in Patients With Psoriasis. Mater Socio Medica. 2022;34(1):40–3.

Mylonas A, Conrad C. Psoriasis: classical vs. paradoxical. The Yin-Yang of TNF and type I interferon. Front Immunol. 2018;9:2746.

Lee SE, Lee W. The increased expression of matrix metalloproteinase-9 messenger RNA in the non-lesional skin of patients with large plaque psoriasis vulgaris. Ann Dermatol. 2009;21(1):27–34.

Alves-Filho JC, Melo BMS, Ryffel B. MMP-9 Mediates cross-talk between neutrophils and endothelial cells in psoriasis. J Invest Dermatol. 2021;141(4):716–8.

Downloads

Published

2025-12-18

How to Cite

Purwoko, M., Mundijo, T., Astri, Y., & Rohani, S. (2025). Network Pharmacology of Plumbagin for the Treatment of Psoriasis. Jordan Journal of Pharmaceutical Sciences, 18(4), 959–969. https://doi.org/10.35516/jjps.v18i4.3091

Issue

Section

Articles