Swietenia mahagoni Leaves Ethanolic Extract: In vitro anti-Oxidant Activity, Active Compound Identification and in silico Prediction as AKT-1 and MDM2 Protein Inhibitor
DOI:
https://doi.org/10.35516/jjps.v18i3.3169Keywords:
Anticancer, Insilico, Plant-based medicine, Secondary metabolite, Swietenia mahagoniAbstract
The strong correlation between traditional practices and the pharmacological properties of these plants supports their continued use in treating various health conditions. This study evaluated and predicted the active compound in the ethanolic extract of Swietenia mahagoni leaves and their potency for inhibiting cancer cell growth. The analysis included measuring DPPH free radical inhibition, total phenolic and flavonoid content, drug-likeness evaluation, and molecular docking studies. Findings suggest that the ethanolic extract of S. mahagoni leaves ethanolic extract exhibits antioxidant properties due to its content of phenolic and flavonoid compounds such as Quercitrin, (+)-ar-Turmerone, and Hyperoside, which also meet Lipinski's criteria. Additionally, these compounds might act as inhibitors of MDM2 or AKT-1, potentially blocking MDM2 and AKT-1 and inducing apoptosis in cancer cells. Further research should be conducted in vitro to validate the activity of the studied compounds.
References
Widodo N, Puspitarini S, Widyananda MH, Alamsyah A, Wicaksono ST, Masruri M, et al. Anticancer activity of Caesalpinia sappan by downregulating mitochondrial genes in A549 lung cancer cell line [version 2; peer review: 2 approved]. 2022. DOI: https://doi.org/10.12688/f1000research.76187.2
George BP, Chandran R, Abrahamse H. Role of Phytochemicals in Cancer Chemoprevention: Insights. Antioxidants. 2021;10:1455. DOI: https://doi.org/10.3390/antiox10091455
Wargasetia TL, Permana S, Widodo N. Potential use of compounds from sea cucumbers as MDM2 and CXCR4 inhibitors to control cancer cell growth. Exp Ther Med. 2018;16:2985–91. DOI: https://doi.org/10.3892/etm.2018.6588
Osanloo M, Yousefpoor Y, Alipanah H, Ghanbariasad A, Jalilvand M, Amani A. In-vitro Assessment of Essential Oils as Anticancer Therapeutic Agents: A Systematic Literature Review. Jordan Journal of Pharmaceutical Sciences. 2022;15:173–203. DOI: https://doi.org/10.35516/jjps.v15i2.319
Widyananda MH, Wicaksono ST, Rahmawati K, Puspitarini S, Ulfa SM, Jatmiko YD, et al. A Potential Anticancer Mechanism of Finger Root (Boesenbergia rotunda) Extracts against a Breast Cancer Cell Line. Scientifica. 2022;2022:e9130252. DOI: https://doi.org/10.1155/2022/9130252
Wargasetia TL, Ratnawati H, Widodo N, Widyananda MH. Bioinformatics Study of Sea Cucumber Peptides as Antibreast Cancer Through Inhibiting the Activity of Overexpressed Protein (EGFR, PI3K, AKT1, and CDK4). Cancer Inform. 2021;20:11769351211031864. DOI: https://doi.org/10.1177/11769351211031864
Wargasetia TL, Widodo null. Mechanisms of cancer cell killing by sea cucumber-derived compounds. Invest New Drugs. 2017;35:820–6. DOI: https://doi.org/10.1007/s10637-017-0505-5
Fathima S, Durairaj SK, Padigaru M, Cma B. Efficacy of a Polyherbal Supplement in Enhancing Immune Cells in Individuals Frequently Susceptible to Cold and Flu. Current Developments in Nutrition. 2022;6:977. DOI: https://doi.org/10.1093/cdn/nzac068.006
Zaki PH, Gandaseca S, Rashidi NM, Ismail MH. Traditional usage of medicinal plants by Temiar tribes in the State of Kelantan, Peninsular Malaysia. Forest and Society. 2019;3:227–34. DOI: https://doi.org/10.24259/fs.v3i2.6424
Budiyanto M, Puspitarini S, Prasetyo S, Subekti H, Birhan YS, Qosyim A, et al. In vitro investigation on Pennisetum purpureum leaf extracts grown in Indonesia of phytochemical components, optical characteristics, and antioxidant-antibacterial activities. Braz J Biol. 2024;84:e280855. DOI: https://doi.org/10.1590/1519-6984.280855
Kuswanti N, Widyarti S, Widodo W, Rifa’i M. Apoptotic and necrotic lymphocytes after treatment of stem bark extract of Plumeria rubra L invitro. IOP Conf Ser: Earth Environ Sci. 2019;391:012031. DOI: https://doi.org/10.1088/1755-1315/391/1/012031
Ismail WH, Abusara OH, Ikhmais B, Abul-Futouh H, Sunoqrot S, Ibrahim AIM. Design, Synthesis, and Biological Activity of Coniferyl Aldehyde Derivatives as Potential Anticancer and Antioxidant Agents. Jordan Journal of Pharmaceutical Sciences. 2023;16:368–80. DOI: https://doi.org/10.35516/jjps.v16i2.1463
Utaminingrum W, Nofrianti N, Hartanti D. Diversity and use of medicinal plants for traditional women’s health care in Northern Banyumas, Indonesia. Biodiversitas Journal of Biological Diversity [Internet]. 2022 [cited 2024 Jan 24];23. Available from: https://smujo.id/biodiv/article/view/10300 DOI: https://doi.org/10.13057/biodiv/d230431
Rahhal BM, Jaradat N, Issa L, Hussein F, Amara G, Gazawi L, et al. Unveiling the Phytochemical Profiling, hypolipidemic, hypoglycemic and antioxidant effects of different extracts from Lavandula stoechas L. (French lavender) grown in Palestine. Jordan Journal of Pharmaceutical Sciences. 2025;18:509–23. DOI: https://doi.org/10.35516/jjps.v18i2.2611
Kamble ANS, Mitkar AA. Swiss ADME predictions of pharmacokinetics and drug-likeness properties of secondary metabolites present in Trigonella foenum-graecum. J Pharmacogn Phytochem. 2023;12:341–9. DOI: https://doi.org/10.22271/phyto.2023.v12.i5d.14745
Novian DR, Ikhwani AZN, Winarso A. Uji farmakodinamik, drug-likeness, farmakokinetik dan interaksi senyawa aktif kayu ular (Strychnos lucida) sebagai inhibitor Plasmodium falciparum secara in silico. Jurnal Veteriner Nusantara. 2019;2:70–8.
Pratiwi S, Emelda E, Kusumawardani N, Munir MA, Azizah A. Analysis of Total Phenolic Content and Antioxidant Activity of Mahogany Seed Infusion (Swietenia mahagoni (L.) Jacq.). Jurnal Gizi dan Dietetik Indonesia (Indonesian Journal of Nutrition and Dietetics) [Internet]. 2024 [cited 2024 Aug 14];12. Available from: https://ejournal.almaata.ac.id/index.php/IJND/article/view/3768 DOI: https://doi.org/10.21927/ijnd.2024.12(4).262-272
Masendra M, Purba BAV, Arisandi R, Lukmandaru G. Chemical investigation of methanol extracts of Swietenia mahagoni leaves and its antioxidant activity. Wood Research Journal. 2014;5:51–6. DOI: https://doi.org/10.51850/wrj.2014.5.2.51-56
Susilo B, Oktavianty O, Rahayu F, Handayani MLW, Rohim A. Potential transformation of seagrass (Syringodium isoetifolium) into a bioactive food ingredient using different extraction techniques [Internet]. F1000Research; 2023 [cited 2024 Aug 16]. Available from: https://f1000research.com/articles/12-1078 DOI: https://doi.org/10.12688/f1000research.128718.1
Turangan ATM, Wewengkang DS, Yudistira A. UJI AKTIVITAS ANTIOKSIDAN EKSTRAK ETANOL KULIT BATANG MAHONI (Swietenia mahagoni Jacq.) MENGGUNAKAN METODE DPPH (1,1 diphenyl-2-picrylhydrazyl). PHARMACON. 2019;8:548–55. DOI: https://doi.org/10.35799/pha.8.2019.29329
Borah A, Selvaraj S, Holla SR, De S. Extraction and characterization of total phenolic and flavonoid contents from bark of Swietenia macrophylla and their antimicrobial and antioxidant properties. Arabian Journal of Chemistry. 2022;15:104370. DOI: https://doi.org/10.1016/j.arabjc.2022.104370
Nathasa K, Hakim AR, Hidayah N. COMPARISON OF TOTAL FLAVONOID CONTENT BASED ON DIFFERENCES IN ETHANOL SOLUTION CONCENTRATION FROM MAHOGANY FRUIT SEEDS (Swietenia mahagoni). International Conference on Health and Science. 2021;1:190–202.
Hartati H, Salleh LM, Idris IS, Azis AA. WOUND HEALING PROPERTIES OF SWIETENIA MAHAGONI SEED EXTRACTED USING SCCO2: AN IN VITRO STUDY. Jurnal Teknologi [Internet]. 2018 [cited 2024 Jan 23];81. Available from: https://journals.utm.my/index.php/jurnalteknologi/article/view/12195 DOI: https://doi.org/10.11113/jt.v81.12195
Sahgal G, Ramanathan S, Sasidharan S, Mordi M, Ismail S, Mansor S. In Vitro Antioxidant and Xanthine Oxidase Inhibitory Activities of Methanolic Swietenia mahagoni Seed Extracts. Molecules (Basel, Switzerland). 2009;14:4476–85. DOI: https://doi.org/10.3390/molecules14114476
Comalada M, Camuesco D, Sierra S, Ballester I, Xaus J, Gálvez J, et al. In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-κB pathway. European Journal of Immunology. 2005;35:584–92. DOI: https://doi.org/10.1002/eji.200425778
Cao W, Chen X, Xiao C, Lin D, Li Y, Luo S, et al. Ar-turmerone inhibits the proliferation and mobility of glioma by downregulating cathepsin B. Aging. 2023;15:9377–90. DOI: https://doi.org/10.18632/aging.204940
Xu S, Chen S, Xia W, Sui H, Fu X. Hyperoside: A Review of Its Structure, Synthesis, Pharmacology, Pharmacokinetics and Toxicity. Molecules. 2022;27:3009. DOI: https://doi.org/10.3390/molecules27093009
Khan MF, Nahar N, Rashid RB, Chowdhury A, Rashid MA. Computational investigations of physicochemical, pharmacokinetic, toxicological properties and molecular docking of betulinic acid, a constituent of Corypha taliera (Roxb.) with Phospholipase A2 (PLA2). BMC Complement Altern Med. 2018;18:48. DOI: https://doi.org/10.1186/s12906-018-2116-x
Karami TK, Hailu S, Feng S, Graham R, Gukasyan HJ. Eyes on Lipinski’s Rule of Five: A New “Rule of Thumb” for Physicochemical Design Space of Ophthalmic Drugs. Journal of Ocular Pharmacology and Therapeutics. 2022;38:43. DOI: https://doi.org/10.1089/jop.2021.0069
Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the Rule of 5 and Drugability. Adv Drug Deliv Rev. 2016;101:89–98. DOI: https://doi.org/10.1016/j.addr.2016.05.007
Chibaya L, Karim B, Zhang H, Jones SN. Mdm2 phosphorylation by Akt regulates the p53 response to oxidative stress to promote cell proliferation and tumorigenesis. Proceedings of the National Academy of Sciences. 2021;118:e2003193118. DOI: https://doi.org/10.1073/pnas.2003193118
Singh S, Ramamoorthy M, Vaughan C, Yeudall WA, Deb S, Palit Deb S. Human oncoprotein MDM2 activates the Akt signaling pathway through an interaction with the repressor element-1 silencing transcription factor conferring a survival advantage to cancer cells. Cell Death Differ. 2013;20:558–66 DOI: https://doi.org/10.1038/cdd.2012.153







