سويتينيا ماهاغوني يترك المستخلص الإيثانولي: نشاط مضاد للأكسدة في المختبر، وتحديد المركب النشط والتنبؤ بالسيليكو كمثبط بروتين AKT-1 وMDM2

المؤلفون

  • Sapti Puspitarini برنامج دراسة تعليم العلوم، كلية الرياضيات والعلوم الطبيعية، جامعة نيجيري سورابايا، سورابايا، إندونيسيا
  • Mohammad Budiyanto برنامج دراسة تعليم العلوم، كلية الرياضيات والعلوم الطبيعية، جامعة نيجيري سورابايا، سورابايا، إندونيسيا
  • Muhammad Arif Mahdiannur برنامج دراسة تعليم العلوم، كلية الرياضيات والعلوم الطبيعية، جامعة نيجيري سورابايا، سورابايا، إندونيسيا
  • Roihana Waliyyul Mursyidah برنامج دراسة تعليم العلوم، كلية الرياضيات والعلوم الطبيعية، جامعة نيجيري سورابايا، سورابايا، إندونيسيا
  • Ertika Fitri Lisnanti برنامج دراسة التربية الحيوانية، كلية الزراعة، جامعة قادري الإسلامية، كديري، إندونيسيا
  • Fasih Bintang Ilhami برنامج دراسة التربية الحيوانية، كلية الزراعة، جامعة قادري الإسلامية، كديري، إندونيسيا

DOI:

https://doi.org/10.35516/jjps.v18i3.3169

الكلمات المفتاحية:

مضاد للسرطان، Insilico، دواء نباتي، مستقلب ثانوي، Swietenia mahagoni

الملخص

يدعم الارتباط الوثيق بين الممارسات التقليدية والخصائص الدوائية لهذه النباتات استمرار استخدامها في علاج مختلف الحالات الصحية. قيّمت هذه الدراسة وتوقعت المركب النشط في المستخلص الإيثانولي لأوراق سويتينيا ماهاغوني وفعاليته في تثبيط نمو الخلايا السرطانية. شمل التحليل قياس تثبيط الجذور الحرة DPPH، ومحتوى الفينول والفلافونويد الكلي، وتقييم تشابه الأدوية، ودراسات الالتحام الجزيئي. تشير النتائج إلى أن المستخلص الإيثانولي لأوراق S. mahagoni يُظهر خصائص مضادة للأكسدة نظرًا لاحتوائه على مركبات فينولية وفلافونويدية مثل الكيرسيترين، و(+)-ar-Turmerone، وهايبروسيد، والتي تُلبي أيضًا معايير ليبينسكي. بالإضافة إلى ذلك، قد تعمل هذه المركبات كمثبطات لـ MDM2 أو AKT-1، مما قد يُعيق MDM2 وAKT-1 ويُحفز موت الخلايا المبرمج في الخلايا السرطانية. ينبغي إجراء المزيد من الأبحاث في المختبر للتحقق من فعالية المركبات المدروسة.

المراجع

Widodo N, Puspitarini S, Widyananda MH, Alamsyah A, Wicaksono ST, Masruri M, et al. Anticancer activity of Caesalpinia sappan by downregulating mitochondrial genes in A549 lung cancer cell line [version 2; peer review: 2 approved]. 2022. DOI: https://doi.org/10.12688/f1000research.76187.2

George BP, Chandran R, Abrahamse H. Role of Phytochemicals in Cancer Chemoprevention: Insights. Antioxidants. 2021;10:1455. DOI: https://doi.org/10.3390/antiox10091455

Wargasetia TL, Permana S, Widodo N. Potential use of compounds from sea cucumbers as MDM2 and CXCR4 inhibitors to control cancer cell growth. Exp Ther Med. 2018;16:2985–91. DOI: https://doi.org/10.3892/etm.2018.6588

Osanloo M, Yousefpoor Y, Alipanah H, Ghanbariasad A, Jalilvand M, Amani A. In-vitro Assessment of Essential Oils as Anticancer Therapeutic Agents: A Systematic Literature Review. Jordan Journal of Pharmaceutical Sciences. 2022;15:173–203. DOI: https://doi.org/10.35516/jjps.v15i2.319

Widyananda MH, Wicaksono ST, Rahmawati K, Puspitarini S, Ulfa SM, Jatmiko YD, et al. A Potential Anticancer Mechanism of Finger Root (Boesenbergia rotunda) Extracts against a Breast Cancer Cell Line. Scientifica. 2022;2022:e9130252. DOI: https://doi.org/10.1155/2022/9130252

Wargasetia TL, Ratnawati H, Widodo N, Widyananda MH. Bioinformatics Study of Sea Cucumber Peptides as Antibreast Cancer Through Inhibiting the Activity of Overexpressed Protein (EGFR, PI3K, AKT1, and CDK4). Cancer Inform. 2021;20:11769351211031864. DOI: https://doi.org/10.1177/11769351211031864

Wargasetia TL, Widodo null. Mechanisms of cancer cell killing by sea cucumber-derived compounds. Invest New Drugs. 2017;35:820–6. DOI: https://doi.org/10.1007/s10637-017-0505-5

Fathima S, Durairaj SK, Padigaru M, Cma B. Efficacy of a Polyherbal Supplement in Enhancing Immune Cells in Individuals Frequently Susceptible to Cold and Flu. Current Developments in Nutrition. 2022;6:977. DOI: https://doi.org/10.1093/cdn/nzac068.006

Zaki PH, Gandaseca S, Rashidi NM, Ismail MH. Traditional usage of medicinal plants by Temiar tribes in the State of Kelantan, Peninsular Malaysia. Forest and Society. 2019;3:227–34. DOI: https://doi.org/10.24259/fs.v3i2.6424

Budiyanto M, Puspitarini S, Prasetyo S, Subekti H, Birhan YS, Qosyim A, et al. In vitro investigation on Pennisetum purpureum leaf extracts grown in Indonesia of phytochemical components, optical characteristics, and antioxidant-antibacterial activities. Braz J Biol. 2024;84:e280855. DOI: https://doi.org/10.1590/1519-6984.280855

Kuswanti N, Widyarti S, Widodo W, Rifa’i M. Apoptotic and necrotic lymphocytes after treatment of stem bark extract of Plumeria rubra L invitro. IOP Conf Ser: Earth Environ Sci. 2019;391:012031. DOI: https://doi.org/10.1088/1755-1315/391/1/012031

Ismail WH, Abusara OH, Ikhmais B, Abul-Futouh H, Sunoqrot S, Ibrahim AIM. Design, Synthesis, and Biological Activity of Coniferyl Aldehyde Derivatives as Potential Anticancer and Antioxidant Agents. Jordan Journal of Pharmaceutical Sciences. 2023;16:368–80. DOI: https://doi.org/10.35516/jjps.v16i2.1463

Utaminingrum W, Nofrianti N, Hartanti D. Diversity and use of medicinal plants for traditional women’s health care in Northern Banyumas, Indonesia. Biodiversitas Journal of Biological Diversity [Internet]. 2022 [cited 2024 Jan 24];23. Available from: https://smujo.id/biodiv/article/view/10300 DOI: https://doi.org/10.13057/biodiv/d230431

Rahhal BM, Jaradat N, Issa L, Hussein F, Amara G, Gazawi L, et al. Unveiling the Phytochemical Profiling, hypolipidemic, hypoglycemic and antioxidant effects of different extracts from Lavandula stoechas L. (French lavender) grown in Palestine. Jordan Journal of Pharmaceutical Sciences. 2025;18:509–23. DOI: https://doi.org/10.35516/jjps.v18i2.2611

Kamble ANS, Mitkar AA. Swiss ADME predictions of pharmacokinetics and drug-likeness properties of secondary metabolites present in Trigonella foenum-graecum. J Pharmacogn Phytochem. 2023;12:341–9. DOI: https://doi.org/10.22271/phyto.2023.v12.i5d.14745

Novian DR, Ikhwani AZN, Winarso A. Uji farmakodinamik, drug-likeness, farmakokinetik dan interaksi senyawa aktif kayu ular (Strychnos lucida) sebagai inhibitor Plasmodium falciparum secara in silico. Jurnal Veteriner Nusantara. 2019;2:70–8.

Pratiwi S, Emelda E, Kusumawardani N, Munir MA, Azizah A. Analysis of Total Phenolic Content and Antioxidant Activity of Mahogany Seed Infusion (Swietenia mahagoni (L.) Jacq.). Jurnal Gizi dan Dietetik Indonesia (Indonesian Journal of Nutrition and Dietetics) [Internet]. 2024 [cited 2024 Aug 14];12. Available from: https://ejournal.almaata.ac.id/index.php/IJND/article/view/3768 DOI: https://doi.org/10.21927/ijnd.2024.12(4).262-272

Masendra M, Purba BAV, Arisandi R, Lukmandaru G. Chemical investigation of methanol extracts of Swietenia mahagoni leaves and its antioxidant activity. Wood Research Journal. 2014;5:51–6. DOI: https://doi.org/10.51850/wrj.2014.5.2.51-56

Susilo B, Oktavianty O, Rahayu F, Handayani MLW, Rohim A. Potential transformation of seagrass (Syringodium isoetifolium) into a bioactive food ingredient using different extraction techniques [Internet]. F1000Research; 2023 [cited 2024 Aug 16]. Available from: https://f1000research.com/articles/12-1078 DOI: https://doi.org/10.12688/f1000research.128718.1

Turangan ATM, Wewengkang DS, Yudistira A. UJI AKTIVITAS ANTIOKSIDAN EKSTRAK ETANOL KULIT BATANG MAHONI (Swietenia mahagoni Jacq.) MENGGUNAKAN METODE DPPH (1,1 diphenyl-2-picrylhydrazyl). PHARMACON. 2019;8:548–55. DOI: https://doi.org/10.35799/pha.8.2019.29329

Borah A, Selvaraj S, Holla SR, De S. Extraction and characterization of total phenolic and flavonoid contents from bark of Swietenia macrophylla and their antimicrobial and antioxidant properties. Arabian Journal of Chemistry. 2022;15:104370. DOI: https://doi.org/10.1016/j.arabjc.2022.104370

Nathasa K, Hakim AR, Hidayah N. COMPARISON OF TOTAL FLAVONOID CONTENT BASED ON DIFFERENCES IN ETHANOL SOLUTION CONCENTRATION FROM MAHOGANY FRUIT SEEDS (Swietenia mahagoni). International Conference on Health and Science. 2021;1:190–202.

Hartati H, Salleh LM, Idris IS, Azis AA. WOUND HEALING PROPERTIES OF SWIETENIA MAHAGONI SEED EXTRACTED USING SCCO2: AN IN VITRO STUDY. Jurnal Teknologi [Internet]. 2018 [cited 2024 Jan 23];81. Available from: https://journals.utm.my/index.php/jurnalteknologi/article/view/12195 DOI: https://doi.org/10.11113/jt.v81.12195

Sahgal G, Ramanathan S, Sasidharan S, Mordi M, Ismail S, Mansor S. In Vitro Antioxidant and Xanthine Oxidase Inhibitory Activities of Methanolic Swietenia mahagoni Seed Extracts. Molecules (Basel, Switzerland). 2009;14:4476–85. DOI: https://doi.org/10.3390/molecules14114476

Comalada M, Camuesco D, Sierra S, Ballester I, Xaus J, Gálvez J, et al. In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-κB pathway. European Journal of Immunology. 2005;35:584–92. DOI: https://doi.org/10.1002/eji.200425778

Cao W, Chen X, Xiao C, Lin D, Li Y, Luo S, et al. Ar-turmerone inhibits the proliferation and mobility of glioma by downregulating cathepsin B. Aging. 2023;15:9377–90. DOI: https://doi.org/10.18632/aging.204940

Xu S, Chen S, Xia W, Sui H, Fu X. Hyperoside: A Review of Its Structure, Synthesis, Pharmacology, Pharmacokinetics and Toxicity. Molecules. 2022;27:3009. DOI: https://doi.org/10.3390/molecules27093009

Khan MF, Nahar N, Rashid RB, Chowdhury A, Rashid MA. Computational investigations of physicochemical, pharmacokinetic, toxicological properties and molecular docking of betulinic acid, a constituent of Corypha taliera (Roxb.) with Phospholipase A2 (PLA2). BMC Complement Altern Med. 2018;18:48. DOI: https://doi.org/10.1186/s12906-018-2116-x

Karami TK, Hailu S, Feng S, Graham R, Gukasyan HJ. Eyes on Lipinski’s Rule of Five: A New “Rule of Thumb” for Physicochemical Design Space of Ophthalmic Drugs. Journal of Ocular Pharmacology and Therapeutics. 2022;38:43. DOI: https://doi.org/10.1089/jop.2021.0069

Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the Rule of 5 and Drugability. Adv Drug Deliv Rev. 2016;101:89–98. DOI: https://doi.org/10.1016/j.addr.2016.05.007

Chibaya L, Karim B, Zhang H, Jones SN. Mdm2 phosphorylation by Akt regulates the p53 response to oxidative stress to promote cell proliferation and tumorigenesis. Proceedings of the National Academy of Sciences. 2021;118:e2003193118. DOI: https://doi.org/10.1073/pnas.2003193118

Singh S, Ramamoorthy M, Vaughan C, Yeudall WA, Deb S, Palit Deb S. Human oncoprotein MDM2 activates the Akt signaling pathway through an interaction with the repressor element-1 silencing transcription factor conferring a survival advantage to cancer cells. Cell Death Differ. 2013;20:558–66 DOI: https://doi.org/10.1038/cdd.2012.153

التنزيلات

منشور

2025-09-24

كيفية الاقتباس

Puspitarini, S., Budiyanto, M., Mahdiannur, M. A., Mursyidah, R. W., Lisnanti, E. F., & Ilhami, F. B. (2025). سويتينيا ماهاغوني يترك المستخلص الإيثانولي: نشاط مضاد للأكسدة في المختبر، وتحديد المركب النشط والتنبؤ بالسيليكو كمثبط بروتين AKT-1 وMDM2. Jordan Journal of Pharmaceutical Sciences, 18(3), 660–671. https://doi.org/10.35516/jjps.v18i3.3169

إصدار

القسم

Articles