Vitamin A Precursor: Beta-Carotene Alleviates the Streptozotocin-Induced Diabetic Retinopathy in Male Adult Zebrafish via the Regulation of the Polyol Pathway
DOI:
https://doi.org/10.35516/jjps.v18i1.3271Keywords:
Aldose reductase, free radical; intravitreal injection, optomotor response, palm oil mill effluent, sorbitol dehydrogenaseAbstract
Diabetic retinopathy (DR) is a progressive neurovascular disorder due to damage to retinal blood vessels. Beta-carotene acts as retinal chromophores and initiates photo-transduction and epithelial maintenance. Beta-carotene (BC) is present in palm oil mill effluent, and it is called palm oil mill effluent-derived beta-carotene (PBC). The present study is designed to evaluate the effect of PBC in streptozotocin-induced DR in zebrafish by measuring the oxidative stress, inflammation, and polyol pathway markers. The five groups of healthy Danio rerio were used in this study. The diabetes retinopathy was instigated by intraperitoneal administration of streptozotocin (STZ) followed by intravitreal administration of STZ on the 7th day. The exposure of PBC (50 and 100 mg/L) and dexamethasone (DEX) was administered for 21 continuous days. The DR-associated visual behaviours i.e., optomotor response (OMR) and startle response (SR) were appraised on 0, 7, 14, and 21st days. The biochemical changes i.e., plasma glucose & homocysteine (HCY); retinal tissue lipid peroxidation, reduced glutathione (GSH), tumor necrosis factor-alpha (TNF-α), superoxide dismutase (SOD) and total protein levels were estimated. The lens was used for the evaluation of polyol pathway markers i.e., sorbitol dehydrogenase (SDH) and aldose reductase (AR) activity. The PBC potentially attenuated the DR with the regulation of biochemical abnormalities which is similar to DEX treated group. Hence, PBC can be used for the management of DR due to its anti-hyperglycemia, antioxidant, anti-inflammatory, and polyol pathway regulatory actions.
References
Gupta S. and Thool A. R. A Narrative review of retinopathy in diabetic patients. Cureus. 2024; 16(1). DOI: https://doi.org/10.7759/cureus.52308
Chen J., Zhuo X., Zhu Y. and Zhuo Y. Multidisciplinary approaches in the treatment of retinal degenerative diseases: A review. Adv. Therap. 2024; 7(2):2300162. DOI: https://doi.org/10.1002/adtp.202300162
Oshitari T. Advanced glycation end-products and diabetic neuropathy of the retina. Int. J. Mol. Sci. 2023; 24(3):2927. DOI: https://doi.org/10.3390/ijms24032927
Srivastava N. Diabetes and the retinal changes in the eye: A threat to the sight. Int. J. Community Med. Public Health. 2024; 11(2):1030. DOI: https://doi.org/10.18203/2394-6040.ijcmph20240301
Al Saad M., Shehadeh A., Abu Ameerh M. A., Meqbil J., Qablawi M., AlRyalat S. A. D. and Elubous K. Evaluation of changes in the ganglionic cell inner plexiform layer and macular retinal nerve fiber layer in patients receiving hydroxychloroquine. Jordan J. Pharm. Sci. 2023; 16:163-170. DOI: https://doi.org/10.35516/jjps.v16i1.1076
Thirunavukarasu A. J., Ross A. C. and Gilbert R. M. Vitamin A, systemic T-cells, and the eye: Focus on degenerative retinal disease. Front. Nutr. 2022; 9:914457. DOI: https://doi.org/10.3389/fnut.2022.914457
Semenova Y. and Bjørklund G. Antioxidants and neurodegenerative eye disease. Crit. Rev. Food Sci. Nutr. 2023; 1-19. DOI: https://doi.org/10.1080/10408398.2023.2215865
Radzin S., Wiśniewska-Becker A., Markiewicz M., Bętkowski S., Furso J., Waresiak J., Grolik J., Sarna T. and Pawlak A. M. Structural impact of selected retinoids on model photoreceptor membranes. Membranes. 2023; 13(6):575. DOI: https://doi.org/10.3390/membranes13060575
Levine D. A., Mathew N. E., Jung E. H., Yan J., Newman N. J., Thulasi P., Yeh S., Ziegler, T. R., Wells J. and Jain N. Characteristics of vitamin A deficiency retinopathy at a tertiary referral center in the United States. Ophthalmol. Retina. 2024; 8(2):126-36. DOI: https://doi.org/10.1016/j.oret.2023.08.021
Ichsan A. M., Bukhari A., Lallo S., Miskad U. A., Dzuhry A. A., Islam I. C. and Muhiddin H. S. Effect of retinol and α-tocopherol supplementation on photoreceptor and retinal ganglion cell apoptosis in diabetic rats model. Int. J. Retina Vitreous. 2022; 8(1):40. DOI: https://doi.org/10.1186/s40942-022-00392-2
Kamal S., Junaid M., Ejaz A., Bibi I. and Bigiu N. Eye sight and carotenoids. Carotenoids: Structure and function in the human body; Springer Cham: Switzerland. 2021; 609-647. DOI: https://doi.org/10.1007/978-3-030-46459-2_19
Gebregziabher B. S., Gebremeskel H., Debesa B., Ayalneh D., Mitiku T., Wendwessen T., Habtemariam E., Nur S. and Getachew T. Carotenoids: Dietary sources, health functions, biofortification, marketing trend and affecting factors - A review. J. Agric. Food Res. 2023; 14:100834. DOI: https://doi.org/10.1016/j.jafr.2023.100834
Paramaswaran Y., Subramanian A., Paramakrishnan N., Ramesh M. and Muthuraman A. Therapeutic investigation of palm oil mill effluent-derived beta-carotene in streptozotocin-induced diabetic retinopathy via the regulation of blood-retina barrier functions. Pharmaceuticals. 2023; 16. DOI: https://doi.org/10.3390/ph16050647
Zhang L., Wang K., Liang S., Cao J., Yao M., Qin L., Qu C. and Miao J. Beneficial effect of ζ-carotene-like compounds on acute UVB irradiation by alleviating inflammation and regulating intestinal flora. Food & Funct. 2023; 14(18):8331-8350. DOI: https://doi.org/10.1039/D3FO02502K
Wan Chik M., Ramli N. A., Mohamad Nor Hazalin N. A. and Surindar Singh G. K. Streptozotocin mechanisms and its role in rodent models for Alzheimer’s disease. Toxin Rev. 2023; 42(1):491-502. DOI: https://doi.org/10.1080/15569543.2022.2150646
Zhou J. and Chen B. Retinal cell damage in diabetic retinopathy. Cells. 2023; 12. DOI: https://doi.org/10.3390/cells12091342
Biswas A., Choudhury A. D., Agrawal S., Bisen A. C., Sanap S. N., Verma S. K., Kumar M., Mishra A., Kumar S., Chauhan M. and Bhatta R.S. Recent insights into the etiopathogenesis of diabetic retinopathy and its management. J. Ocul. Pharmacol. Ther. 2024; 40(1):13-33. DOI: https://doi.org/10.1089/jop.2023.0068
Sun K. X., Chen Y. Y., Li Z., Zheng S. J., Wan W. J., Ji Y. and Hu, K. Genipin relieves diabetic retinopathy by down-regulation of advanced glycation end products via the mitochondrial metabolism related signaling pathway. World J. Diabetes. 2023; 14(9):1349. DOI: https://doi.org/10.4239/wjd.v14.i9.1349
Jagadeeshwar K., Rupaka S. R., Alavala R. R., Rao G. S. N. K. and Kulandaivelu U. Investigation of nootropic and neuroprotective activity of Myristica malabarica bark extracts on STZ induced cognitive impairment in experimental animals. Jordan J. Pharm. Sci. 2023; 16:171-183. DOI: https://doi.org/10.35516/jjps.v16i2.1318
Middel C. S., Dietrich N., Hammes H. P. and Kroll J. Analysis of the morphology of retinal vascular cells in zebrafish (Danio rerio). Front. Cell. Dev. Biol. 2023; 11. DOI: https://doi.org/10.3389/fcell.2023.1267232
Middel C. S., Hammes H. P. and Kroll J. Advancing diabetic retinopathy research: Analysis of the neurovascular unit in zebrafish. Cells. 2021; 10(6). DOI: https://doi.org/10.3390/cells10061313
Williams F. The use of zebrafish and in vivo pal as a novel discovery platform for psychoactive agents. Jordan J. Pharm. Sci. 2023; 16:559. DOI: https://doi.org/10.35516/jjps.v16i2.1498
Veldman M. B. and Lin S. Zebrafish as a developmental model organism for pediatric research. Pediatr. Res. 2008; 64:470-476. DOI: https://doi.org/10.1203/PDR.0b013e318186e609
Heckler K. and Kroll J. Zebrafish as a model for the study of microvascular complications of diabetes and their mechanisms. Int. J. Mol. Sci. 2017; 18. DOI: https://doi.org/10.3390/ijms18092002
Lee Y. and Yang J. Development of a zebrafish screening model for diabetic retinopathy induced by hyperglycemia: Reproducibility verification in animal model. Biomed. Pharmacother. 2021; 135: 111201. DOI: https://doi.org/10.1016/j.biopha.2020.111201
Chhetri J., Jacobson G. and Gueven N. Zebrafish on the move towards ophthalmological research. Eye. 2014; 28:367-380.
Paramakrishnan N., Chavan L., Lim K. G., Paramaswaran Y. and Muthuraman A. Reversal of neuralgia effect of beta carotene in streptozotocin-associated diabetic neuropathic pain in female zebrafish via matrix metalloprotease-13 inhibition. Pharmaceuticals. 2023; 16:157. DOI: https://doi.org/10.3390/ph16020157
Shinohara M., Masuyama T., Shoda T., Takahashi T., Katsuda Y., Komeda K., Kuroki M., Kakehashi A. and Kanazawa Y. A new spontaneously diabetic non-obese torii rat strain with severe ocular complications. Int. J. Exp. Diabetes Res. 2000; 1:89-100. DOI: https://doi.org/10.1155/EDR.2000.89
Quiroz J. and Yazdanyar A. Animal models of diabetic retinopathy. Ann. Transl. Med. 2021; 9:1272. DOI: https://doi.org/10.21037/atm-20-6737
Nuzzi R., Scalabrin S., Becco A. and Panzica G. Gonadal hormones and retinal disorders: A review. Front. Endocrinol. 2018; 9:66. DOI: https://doi.org/10.3389/fendo.2018.00066
Olivares A. M., Althoff K., Chen G. F., Wu S., Morrisson M. A., DeAngelis M. M. and Haider N. Animal models of diabetic retinopathy. Curr. Diab. Rep. 2017; 17:93. DOI: https://doi.org/10.1007/s11892-017-0913-0
Wang S., Du S., Wang W. and Zhang F. Therapeutic investigation of quercetin nanomedicine in a zebrafish model of diabetic retinopathy. Biomed. Pharmacother. 2020; 130:110573. DOI: https://doi.org/10.1016/j.biopha.2020.110573
Zang L., Shimada Y., Nishimura Y., Tanaka T. and Nishimura N. Repeated blood collection for blood tests in adult zebrafish. J. Vis. Exp. 2015; (102):e53272. DOI: https://doi.org/10.3791/53272-v
Ohkawa H., Ohishi N. and Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979; 95:351-358. DOI: https://doi.org/10.1016/0003-2697(79)90738-3
Ellman G. L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959; 82(1):70-77. DOI: https://doi.org/10.1016/0003-9861(59)90090-6
Lowry O. H., Rosebrough N. J., Farr A. L. and Randall R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951; 193:265-275. DOI: https://doi.org/10.1016/S0021-9258(19)52451-6
Fleisch V. C. and Neuhauss S. C. F. Visual behavior in zebrafish. Zebrafish. 2006; 3:191-201. DOI: https://doi.org/10.1089/zeb.2006.3.191
Fu R., Liu H., Zhang Y., Mao L., Zhu L., Jiang H., Zhang L. and Liu X. Imidacloprid affects the visual behavior of adult zebrafish (Danio rerio) by mediating the expression of opsin and phototransduction genes and altering the metabolism of neurotransmitters. Sci. Total Environ. 2024; 910:168572. DOI: https://doi.org/10.1016/j.scitotenv.2023.168572
Ninkovic J. and Bally-Cuif L. The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods. 2006; 39:262-274. DOI: https://doi.org/10.1016/j.ymeth.2005.12.007
Chhetri J., Jacobson G. and Gueven N. Zebrafish on the move towards ophthalmological research. Eye (Lond). 2014; 28:367-380. DOI: https://doi.org/10.1038/eye.2014.19
Burton C. E., Zhou Y., Bai Q. and Burton E. A. Spectral properties of the zebrafish visual motor response. Neurosci Lett. 2017; 646:62-67. DOI: https://doi.org/10.1016/j.neulet.2017.03.002
Pedroso G. L., Hammes T. O., Escobar T. D., Fracasso L. B., Forgiarini L. F. and da Silveira T. R. Blood collection for biochemical analysis in adult zebrafish. J Vis Exp. 2012; e3865. DOI: https://doi.org/10.3791/3865-v
Capdevila J., Ducreux M., García Carbonero R., Grande E., Halfdanarson T., Pavel M., Tafuto S., Welin S., Valentí V. and Salazar R. Streptozotocin, 1982–2022: Forty years from the FDA’s approval to treat pancreatic neuroendocrine tumors. Neuroendocrinology. 2022; 112(12):1155-1167. DOI: https://doi.org/10.1159/000524988
Wang R., Rao S., Zhong Z., Xiao K., Chen X. and Sun X. Emerging role of ferroptosis in diabetic retinopathy: a review. J. Drug Target. 2024; 1–11.
Wal P., Wal A., Gupta D., Mantry S., Mahajan K. C., Rathore S. and Behl T. Diabetic retinopathy: Stressing the function of angiogenesis, inflammation and oxidative stress. In: targeting angiogenesis, inflammation, and oxidative stress in chronic diseases; Academic Press. Cambridge, United States 2024; 323-348. DOI: https://doi.org/10.1016/B978-0-443-13587-3.00002-3
Venugopal D., Vishwakarma S., Sharma N., Kaur I. and Samavedi S. Evaluating the protective effects of dexamethasone and electrospun mesh combination on primary human mixed retinal cells under hyperglycemic stress. Int. J. Pharm. 2024; 651:123768. DOI: https://doi.org/10.1016/j.ijpharm.2024.123768
Subramanian A., Thirunavukkarasu J. and Muthuraman A. Astaxanthin ameliorates diabetic retinopathy in swiss albino mice via inhibitory processes of neuron-specific enolase activity. Processes. 2022; 10(7):1318. DOI: https://doi.org/10.3390/pr10071318
Niu T., Shi X., Liu X., Wang H., Liu K. and Xu Y. Porous Se@ SiO2 nanospheres alleviate diabetic retinopathy by inhibiting excess lipid peroxidation and inflammation. Mol. Med. 2024; 30(1):24. DOI: https://doi.org/10.1186/s10020-024-00785-z
Pfaller A. M., Kaplan L., Carido M., Grassmann F., Díaz-Lezama N., Ghaseminejad F., Wunderlich K. A., Glänzer S., Bludau O., Pannicke T. and Weber B.H. The glucocorticoid receptor as a master regulator of the Müller cell response to diabetic conditions in mice. J. Neuroinflammation. 2024; 21(1):33. DOI: https://doi.org/10.1186/s12974-024-03021-x
Szałabska-Rąpała K., Zych M., Borymska W., Londzin P., Dudek S. and Kaczmarczyk-Żebrowska I. Beneficial effect of honokiol and magnolol on polyol pathway and oxidative stress parameters in the testes of diabetic rats. Biomed. Pharmacother. 2024; 172:116265. DOI: https://doi.org/10.1016/j.biopha.2024.116265
Wang N., Singh D. and Wu Q. Astragalin attenuates diabetic cataracts via inhibiting aldose reductase activity in rats. Int. J. Ophthalmol. 2023; 16(8):1186. DOI: https://doi.org/10.18240/ijo.2023.08.02
Aruna V., Amruthavalli G. V. and Gayathri R. DcoD ameliorate diabetic retinopathy through aldose-sorbitol cleavage. J. Pharm. Res. Int. 2023; 35(34):57-61. DOI: https://doi.org/10.9734/jpri/2023/v35i347481
Zhang C., Gu L., Xie H., Liu Y., Huang P., Zhang J., Luo D. and Zhang J. Glucose transport, transporters and metabolism in diabetic retinopathy. Biochim. Biophys. Acta – Mol. Basis. Dis. 2023; 166995. DOI: https://doi.org/10.1016/j.bbadis.2023.166995
Gezer A., Üstündağ H., Karadağ Sarı E., Bedir G., Gür C., Mendil A. S. and Duysak L. β-Carotene protects against α-amanitin nephrotoxicity via modulation of oxidative, autophagic, nitric oxide signaling, and polyol pathways in rat kidneys. Food Chem. Toxicol. 2024; 193:115040. DOI: https://doi.org/10.1016/j.fct.2024.115040
Johra F. T., Bepari A. K., Bristy A. T. and Reza H. M. A mechanistic review of β-carotene, lutein, and zeaxanthin in eye health and disease. Antioxidants. 2020; 9:1046. DOI: https://doi.org/10.3390/antiox9111046
Lorenzi M. The polyol pathway as a mechanism for diabetic retinopathy: Attractive, elusive, and resilient. Exp. Diabetes Res. 2007; 2007:61038. DOI: https://doi.org/10.1155/2007/61038
Fathalipour M., Fathalipour H., Safa O., Nowrouzi-Sohrabi P., Mirkhani H. and Hassanipour S. The therapeutic role of carotenoids in diabetic retinopathy: a systematic review. Diabetes Metab. Syndr. Obes. 2020; 13:2347-2358. DOI: https://doi.org/10.2147/DMSO.S255783
Song Y., Zhu L. and Zheng X. β-carotene inhibits MAPKs signaling pathways on rat colonic epithelial cells to attenuate TNF-α-induced intestinal inflammation and injury. Cell. Biochem. Biophys. 2024; 82(1):291-302. DOI: https://doi.org/10.1007/s12013-023-01202-8
Wu T., Xie Y., Wu Z., Li Y., Jiang M., Yu H., Li X., Wang J., Zhou E. and Yang Z. β-carotene protects mice against lipopolysaccharide and d-galactosamine induced acute liver injury via regulation of NF-κB, MAPK, and Nrf2 signaling. J. Oleo Sci. 2023; 72(11):1027-1035. DOI: https://doi.org/10.5650/jos.ess23100
Zhu C. Aldose reductase inhibitors as potential therapeutic drugs of diabetic complications; Vol 2: Diabetes mellitus-insights and perspectives. IntechOpen, United Kingdom: 2013; 17-46. DOI: https://doi.org/10.5772/54642