عزل وتوصيف وتقييم خصائص البروبيوتيك لبكتيريا Bacillus clausii المعزولة من براز الأطفال في إحدى المقاطعات الشمالية في فيتنام
DOI:
https://doi.org/10.35516/jjps.v17i4.2444الكلمات المفتاحية:
العزل، التوصيف، Bacillus clausii، البروبيوتيك، براز الأطفالالملخص
Bacillus clausii هو بروبيوتيك بشري يستخدم على نطاق واسع في العديد من المنتجات التجارية؛ ومع ذلك، كان هناك بحث محدود حول عزل Bacillus clausii من مصادر متنوعة وتقييم خصائص البروبيوتيك. لأول مرة في هذه الدراسة، تم عزل سلالات Bacillus clausii وتقييمها من عينات البراز التي تم الحصول عليها من أطفال متطوعين أصحاء في مقاطعة شمال فيتنام. تم فحص الخصائص البيولوجية المتأصلة لسلالات Bacillus clausii المعزولة على وجه التحديد لاستكشاف تطبيقها المحتمل كبروبيوتيك. خضعت ثلاث عشرة مستعمرة للفحص من خلال التحليلات المورفولوجية والكيميائية الحيوية، جنبًا إلى جنب مع بروتين Maldi Tof MS. من بين هذه العزلات، تم تحديد Bacillus M23 وM31. في فحص السلامة الأولي، أظهرت كلتا السلالات نشاطًا انحلاليًا سلبيًا. بالإضافة إلى ذلك، تم تحديد خصائص المختبر، مثل تكوين الجراثيم، ومقاومة الأحماض وأملاح الصفراء، ومقاومة الكائنات الحية الدقيقة المسببة للأمراض، وتقييم إنتاج الإنزيمات خارج الخلية، واختبار حساسية المضادات الحيوية لهذه السلالات، والتي تقع ضمن النطاق المرصود لسلالات البروبيوتيك الأخرى. كشف تسلسل جين 16S rRNA أن Bacillus M31 يشترك في تشابه بنسبة 97٪ مع Bacillus clausii DSM 8716 في قاعدة بيانات Genbank. تشير هذه النتائج إلى أن Bacillus clausii M31 يظهر وعدًا كمرشح بروبيوتيك، على الرغم من ضرورة إجراء المزيد من الدراسات المكثفة في المختبر / الجسم الحي للتحقق من فعاليته وسلامته.
المراجع
Lefevre M., et al. Safety assessment of Bacillus subtilis CU1 for use as a probiotic in humans. Regul. Toxicol. Pharmacol. 2017; 83:54–65.
https://doi.org/10.1016/j.yrtph.2016.11.010 DOI: https://doi.org/10.1016/j.yrtph.2016.11.010
Kim B. J., Hong J. H., Jeong Y. S., and Jung H. K. Evaluation of two Bacillus subtilis strains isolated from Korean fermented food as probiotics against loperamide-induced constipation in mice. J. Korean. Soc. Appl. Biol. Chem. 2014; 57(6):797–806.
https://doi.org/10.1007/s13765-014-4106-0 DOI: https://doi.org/10.1007/s13765-014-4106-0
Hameed A., et al. Isolation and characterization of a cholesterol-lowering bacteria from Bubalus bubalis raw milk. Fermentation. 2022; 8:163.
https://doi.org/10.3390/fermentation8040163. DOI: https://doi.org/10.3390/fermentation8040163
Sorokulova I. Modern status and perspectives of Bacillus bacteria as probiotics. J. Prob. Health. 2013; 1:e106. https://doi.org/10.4172/2329-8901.1000e106. DOI: https://doi.org/10.4172/2329-8901.1000e106
Naeem M., et al. Screening of cattle gut-associated Bacillus strains for their potential use as animal probiotics. Indian J. Anim. Res. 2018.
https://doi.org/10.18805/ijar.B-948.
Barakat M., Al-Najjar M. A., Abdulrazzaq S., Talib W. H. and Athamneh T. The immunostimulatory effect of probiotic conditioned medium on RAW264.7 murine macrophages. Jordan Journal of Pharmaceutical Sciences. 2023; 16(2):462.
https://doi.org/10.35516/jjps.v16i2.1501 DOI: https://doi.org/10.35516/jjps.v16i2.1501
Elshaghabee F. M. F., Rokana N., Gulhane R. D., Sharma C. and Panwar H. Bacillus as potential probiotics: Status, concerns, and future perspectives. Front. Microbiol. 2017; 8:1490.
https://doi.org/10.3389/fmicb.2017.01490. DOI: https://doi.org/10.3389/fmicb.2017.01490
Permpoonpattana P., Hong H. A., Khaneja R. and Cutting S. M. Evaluation of Bacillus subtilis strains as probiotics and their potential as a food ingredient. Benef. Microbes. 2017; 3(2):127–135.
https://doi.org/10.3920/BM2012.0002 DOI: https://doi.org/10.3920/BM2012.0002
Lee N. K., Kim W. S. and Paik H. D. Bacillus strains as human probiotics: Characterization, safety, microbiome, and probiotic carrier. Food. Sci. Biotechnol. 2019; 28:1297–1305.
https://doi.org/10.1007/s10068-019-00691-9 DOI: https://doi.org/10.1007/s10068-019-00691-9
Urdaci M. C., Bressollier P. and Pinchuk I. Bacillus clausii probiotic strains: Antimicrobial and immunomodulatory activities. J. Clin. Gastroenterol. 2004; 38(6):86.
https://doi.org/10.1097/01.mcg.0000128925.06662.69 DOI: https://doi.org/10.1097/01.mcg.0000128925.06662.69
Dilshad R. and Batool R. Antibacterial and antioxidant potential of Ziziphus jujube, Fagonia arabica, Mallotus phillipensis, and Hemidesmus indicus. Jordan Journal of Pharmaceutical Sciences. 2022; 15(3):413–427.
https://doi.org/10.35516/jjps.v15i3.417 DOI: https://doi.org/10.35516/jjps.v15i3.417
Ocaña A. M. Review of Bacillus clausii and its use in clinical practice. In Focus. 2007.
https://doi.org/10.1186/s40794-019-0089-5 DOI: https://doi.org/10.1186/s40794-019-0089-5
Odo K. E., Agbo M. O. and Osadebe P. O. Extract and fractions from soil bacteria (Streptomyces canus ATCC 12647) possess antimicrobial and antioxidative potential in vitro. Jordan Journal of Pharmaceutical Sciences. 2022; 15(3):405–412.
https://doi.org/10.35516/jjps.v15i3.416 DOI: https://doi.org/10.35516/jjps.v15i3.416
Starostin K. V., et al. Identification of Bacillus strains by MALDI TOF MS using a geometric approach. Sci. Rep. 2015; 5:16989.
doi: 10.1038/srep16989
https://doi.org/10.1038/srep16989 DOI: https://doi.org/10.1038/srep16989
Vecchione A., Celandroni F., Mazzantini D., Senesi S., Lupetti A. and Ghelardi E. Compositional quality and potential gastrointestinal behavior of probiotic products commercialized in Italy. Frontiers in Medicine. 2018; 5.
https://doi.org/10.3389/fmed.2018.00059 DOI: https://doi.org/10.3389/fmed.2018.00059
Suva M., Sureja V. P. and Kheni D. B. Novel insight on probiotic Bacillus subtilis: Mechanism of action and clinical applications. J. Curr. Res. Sci. Med. 2016; 2:65–72. DOI: https://doi.org/10.4103/2455-3069.198381
https://www.researchgate.net/publication/312317617
Jose N. M., Bunt C. R. and Hussain A. M. Comparison of microbiological and probiotic characteristics of lactobacilli isolates from dairy food products and animal rumen contents. Microorganisms. 2015; 3:198–212.
https://doi.org/10.3390/microorganisms3020198 DOI: https://doi.org/10.3390/microorganisms3020198
Corcoran B. M., Stanton C., Fitzgerald G. F., and Ross R. P. Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl Environ Microbiol. 2005; 71(6):3060–3067.
https://doi.org/10.1128/AEM.71.6.3060-3067.2005 DOI: https://doi.org/10.1128/AEM.71.6.3060-3067.2005
Amoah K., Huang Q. C., Tan B. P., Zhang S., Chi S. Y. and Yang Q. H. Dietary supplementation of probiotic Bacillus coagulans ATCC 7050 improves growth performance, intestinal morphology, microflora, immune response, and disease confrontation of Pacific white shrimp (Litopenaeus vannamei). Fish Shellfish Immunol. 2019; 87:796–808.
https://doi.org/10.1016/j.fsi.2019.02.029 DOI: https://doi.org/10.1016/j.fsi.2019.02.029
Giua C., Romano F., Keber E., et al. A prospective real-world study of Bacillus clausii evaluating use, treatment habits, and patient satisfaction in Italian community pharmacies: The PEGASO Study. Drugs - Real World Outcomes. 2023.
https://doi.org/10.1007/s40801-023-00402-1 DOI: https://doi.org/10.1007/s40801-023-00402-1
Amoozegar M., Malekzadeh F. and Malik K. A. Production of amylase by a newly isolated moderate halophile, Halobacillus sp. strain MA-2. J. Microbiol. Methods. 2003; 52:353–359.
https://doi.org/10.1016/S0167-7012(02)00191-4 DOI: https://doi.org/10.1016/S0167-7012(02)00191-4
Niranjana J. and Bavithra P. S. I. A comparative study on screening methods for the detection of protease activity-containing bacteria. Int. J. Sci. Res. 2020; 9:169–171.
https://doi.org/10.21275/ART20203705
Latorre J. D., Hernandez-Velasco X., Wolfenden R. E., Vicente J. L., Wolfenden A. D., Menconi A., Bielke L. R., Hargis B. M. and Tellez G. Evaluation and selection of Bacillus species based on enzyme production, antimicrobial activity, and biofilm synthesis as direct-fed microbial candidates for poultry. Front. Vet. Sci. 2016; 3:95.
https://doi.org/10.3389/fvets.2016.00095 DOI: https://doi.org/10.3389/fvets.2016.00095
Spears J. L., Kramer R., Nikiforov A. I., Rihner M. O. and Lambert E. A. Safety assessment of Bacillus subtilis MB40 for use in foods and dietary supplements. Nutrients. 2021; 13:733.
https://doi.org/10.3390/nu13030733 DOI: https://doi.org/10.3390/nu13030733
Thi Lan Anh H., Thi Thanh Hue L., Hai Linh B. N., Tuan Dung N. H., Duong Minh D., Thi Le Quyen T. and Trung T. T. In vitro safety evaluation of Bacillus subtilis species complex isolated from Vietnam and their additional beneficial properties. Vietnam Journal of Biotechnology. 2022; 20(4):727–740.
https://doi.org/10.15625/1811-4989/16917 DOI: https://doi.org/10.15625/1811-4989/16917
Mohkam M., et al. Multifaceted toxin profile of Bacillus probiotic in newly isolated Bacillus spp. from soil rhizosphere. Biologia. 2020; 75:309–315.
https://doi.org/10.2478/s11756-019-00357-1 DOI: https://doi.org/10.2478/s11756-019-00357-1
Hoyles L., Honda H., Logan N. A., Halket G., La Ragione R. M., and McCartney A. L. Recognition of greater diversity of Bacillus species and related bacteria in human faeces. Res. Microbiol. 2012; 163:3–13.
https://doi.org/10.1016/j.resmic.2011.10.004 DOI: https://doi.org/10.1016/j.resmic.2011.10.004
Lopetuso L. R., Scaldaferri F., Franceschi F., and Gasbarrini A. Bacillus clausii and gut homeostasis: State of the art and future perspectives. Expert Rev. Gastroenterol. Hepatol. 2016; 10:943–948.
https://doi.org/10.1080/17474124.2016.1200465 DOI: https://doi.org/10.1080/17474124.2016.1200465
Bajagai Y. S., Klieve A. V., Dart P. J. and Bryden W. L. (Eds). Probiotics in Animal Nutrition – Production, Impact and Regulation. Rome: FAO Animal Production and Health; 2016. 179.
Fakhry S., Sorrentini I., Ricca E., De Felice M. and Baccigalupi L. Characterization of spore-forming bacilli isolated from the human gastrointestinal tract. Journal of Applied Microbiology, 2008; 105(6):2178–2186.
https://doi.org/10.1111/j.1365-2672.2008.03934.x DOI: https://doi.org/10.1111/j.1365-2672.2008.03934.x
Cenci G., Trotta F., and Caldini G. Tolerance to challenges mimicking gastrointestinal transit by spores and vegetative cells of Bacillus clausii. Journal of Applied Microbiology, 2006; 101(6):1208–1215.
https://doi.org/10.1111/j.1365-2672.2006.03042.x DOI: https://doi.org/10.1111/j.1365-2672.2006.03042.x
Manzulli V., Rondinone V., Buchicchio A., Serrecchia L., Cipolletta D., Fasanella A., Parisi A., Difato L., Iatarola M., et al. Discrimination of Bacillus cereus group members by MALDI-TOF mass spectrometry. Microorganisms. 2021; 9(6):1202.
https://doi.org/10.3390/microorganisms9061202 DOI: https://doi.org/10.3390/microorganisms9061202
Piggot P. J. Bacillus subtilis, Editor(s): Moselio Schaechter, Encyclopedia of Microbiology (Third Edition), Academic Press; 2009:45–56. DOI: https://doi.org/10.1016/B978-012373944-5.00036-5
https://doi.org/10.1006/rwgn.2001.0099 DOI: https://doi.org/10.1006/rwgn.2001.0099
Kuebutornye F. K., et al. In vitro assessment of the probiotic characteristics of three Bacillus species from the gut of Nile tilapia, Oreochromis niloticus. Probiot. Antimicro. Prot. 2017; 12:412–424.
https://doi.org/10.1007/s12602-019-09562-5 DOI: https://doi.org/10.1007/s12602-019-09562-5
Khan F. F., Sohail A., Ghazanfar S., Ahmad A., Riaz A., Abbasi K. S., Ibrahim M. S., Uzair M., and Arshad M. Recent Innovations in Non-dairy Prebiotics and Probiotics: Physiological Potential, Applications, and Characterization. Probiotics Antimicrob Proteins. 2023.
https://doi.org/10.1007/s12602-022-09983-9 DOI: https://doi.org/10.1007/s12602-022-09983-9
Manhar A. K., et al. Cellulolytic potential of probiotic Bacillus subtilis AMS6 isolated from traditional fermented soybean (Churpi): An in vitro study with regards to application as an animal feed additive. Microbiol. Res. 2016; 186–187:62–70.
https://doi.org/10.1016/j.micres.2016.03.004 DOI: https://doi.org/10.1016/j.micres.2016.03.004
Tirabunyanon M., and Tongwittaya N. Protection activity of a novel probiotic strain of Bacillus subtilis against Salmonella Enteritidis infection. Res. Vet. Sci. 2012; 93(1):74–81.
https://doi.org/10.1016/j.rvsc.2011.08.008 DOI: https://doi.org/10.1016/j.rvsc.2011.08.008
Guo X., Chen D-D., Peng K-S., Cui Z-W., Zhang X-J., Li S., et al. Identification and characterization of Bacillus subtilis from grass carp (Ctenopharyngodon idellus) for use as probiotic additives in aquatic feed. Fish Shellfish Immunol. 2016; 52:74–84.
https://doi.org/10.1016/j.fsi.2016.03.017 DOI: https://doi.org/10.1016/j.fsi.2016.03.017
Cutting S. M. Bacillus probiotics. Food Microbiol. 2011; 28:214–220.
https://doi.org/10.1016/j.fm.2010.03.007 DOI: https://doi.org/10.1016/j.fm.2010.03.007
Yasmin I., Saeed M., Khan W. A., Khaliq A., Chughtai M. F. J., Iqbal R., et al. In vitro probiotic potential and safety evaluation (hemolytic, cytotoxic activity) of Bifidobacterium strains isolated from raw camel milk. Microorganisms. 2020; 8:354.
https://doi.org/10.3390/microorganisms8030354 DOI: https://doi.org/10.3390/microorganisms8030354
Daneshazari R., Rabbani Khorasgani M., Hosseini-Abari A. and Kim J. H. Bacillus subtilis isolates from camel milk as probiotic candidates. Sci. Rep. 2023; 13(1):3387.
https://doi.org/10.1038/s41598-023-30507-0 DOI: https://doi.org/10.1038/s41598-023-30507-0
Fijan S. Microorganisms with claimed probiotic properties: An overview of recent literature. Int. J. Environ. Res. Public Health. 2014; 11:4745–4767.
https://doi.org/10.3390/ijerph110504745 DOI: https://doi.org/10.3390/ijerph110504745
Ahire J. J., Kashikar M. S., and Madempudi R. S. Comparative accounts of probiotic properties of spore and vegetative cells of Bacillus clausii UBBC07 and in silico analysis of probiotic function. 3 Biotech. 2021; 11(3):116.
https://doi.org/10.1007/s13205-021-02668-0 DOI: https://doi.org/10.1007/s13205-021-02668-0
Shakira G., et al. (2018) Effect of indigenously isolated Saccharomyces cerevisiae probiotics on milk production, nutrient digestibility, blood chemistry and fecal microbiota in lactating dairy cows. J. Anim. Plant Sci. 2018; 28(2):407–420.
https://api.semanticscholar.org/CorpusID:184482037. Accessed 22 Dec 2023.
Naeem M., et al. Screening of cattle gut associated Bacillus strains for their potential use as animal probiotic. Indian J. Anim. Res. 2018.
https://doi.org/10.18805/ijar.B-948 DOI: https://doi.org/10.18805/ijar.B-948
Ripert G., Racedo S. M., Elie A. M., Jacquot C., Bressollier P. and Urdaci M. C. Secreted Compounds of the Probiotic Bacillus clausii Strain O/C Inhibit the Cytotoxic Effects Induced by Clostridium difficile and Bacillus cereus Toxins. Antimicrob Agents Chemother. 2016.
https://doi.org/10.1128/AAC.02815-15 DOI: https://doi.org/10.1128/AAC.02815-15
Nair A. S., and Dubhashi A. V. In-vitro transit tolerance of probiotic Bacillus species in human gastrointestinal tract. Int. J. Sci. Res. 2015; 5(6):1899–1902.
https://doi.org/10.21275/v5i6.nov164343 DOI: https://doi.org/10.21275/v5i6.NOV164343
Talebi S., Makhdoumi A., Bahreini M., Matin M. M., and Moradi H. S. Three novel Bacillus strains from a traditional lactofermented pickle as potential probiotics. J. Appl. Microbiol. 2018; 125(3):888–896.
https://doi.org/10.1111/jam.13901 DOI: https://doi.org/10.1111/jam.13901
Araya M., Morelli L., Reid G., Sanders M. E. and Stanton C. Joint FAO/WHO Working Group Report on Guidelines for the Evaluation of Probiotics in Food London, Ontario. 2002.
http://ftp.fao.org/es/esn/food/wgreport2.pdf.
Barbosa T. M., Serra C. R., La Ragione R. M., Woodward M. J., and Henriques A. O. Screening for Bacillus isolates in the broiler gastrointestinal tract. Appl. Environ. Microbiol. 2005; 71(2):968–978.
https://doi.org/10.1128/AEM.71.2.968-978.2005 DOI: https://doi.org/10.1128/AEM.71.2.968-978.2005
Lippolis R., Siciliano R., Mazzeo M., Abbrescia A., Gnoni A., Sardanelli A., and Papa S. Comparative secretome analysis of four isogenic Bacillus clausii probiotic strains. Proteome Science. 2013; 11(1):28.
https://doi.org/10.1186/1477-5956-11-28 DOI: https://doi.org/10.1186/1477-5956-11-28







