Rumex conglomeratus Murr. Grown Wild in Syria: Phytochemical Analysis and in Vitro Antioxidant Activities of Aerial Parts and Rhizomes Extracts
DOI:
https://doi.org/10.35516/jjps.v17i4.2448Keywords:
Rumex Conglomeratus, Polygonaceae, Phenols, Anthraquinones, Flavonoids, AntioxidantAbstract
Rumex conglomeratus Murr. (Polygonaceae), has been traditionally used to treat various conditions including skin-ailments, infections, constipation, and cancer. The medicinal importance of Rumex plants stems from their richness in many bioactive secondary metabolites. This study represents the first report on the chemical constituents and antioxidant activity of Rumex conglomeratus aerial parts and rhizomes extracts. The aqueous and ethanolic extracts were prepared and preliminary phytochemical screening tests were conducted. Total phenols, flavonoids, and anthraquinones contents were determined, along with the antioxidant activities, using colorimetric methods and a UV-visible spectrophotometer. The results revealed that R. conglomeratus is a rich source of secondary metabolites. Rhizomes ethanolic extract showed the highest content of phenols (502.55 ± 1.36 mg GAE/g DE) and anthraquinones (6.71 ± 0.106 mg RhE/g DE). It also exhibited the highest antioxidant activity as DPPH free radical scavengers (IC50 = 5.40 ± 0.380 mg/L), and as reducing agents in the FRAP assay (0.230 ± 0.004 at 200 mg/L), and TAC assay (321.41 ± 6.94 mg AAE/g DE). These findings suggest the potential use of R. conglomeratus as a potent antioxidant or even as a laxative agent. However, further research is essential to confirm the safety and efficacy, emphasizing the importance of continued exploration to isolate and identify the biologically active compounds.
References
Zhao L. and Zheng L. A Review on Bioactive Anthraquinone and Derivatives as the Regulators for ROS. Molecules. 2023; 28: 1–23. DOI: https://doi.org/10.3390/molecules28248139
Liguori I., Russo G., Curcio F., et al. Oxidative stress, aging, and diseases. Clinical Interventions in Aging. 2018; 2018: 757–772. DOI: https://doi.org/10.2147/CIA.S158513
Shahidi F. and Zhong Y. Measurement of antioxidant activity. Journal of Functional Foods. 2015; 18: 757–781. DOI: https://doi.org/10.1016/j.jff.2015.01.047
Llauradó Maury G., Méndez Rodríguez D., Hendrix S., et al. Antioxidants in plants: A valorization potential emphasizing the need for the conservation of plant biodiversity in Cuba. Antioxidants. 2020; 9: 1–36. DOI: https://doi.org/10.3390/antiox9111048
Ammar S., Abidi J., Luca S. V., et al. Untargeted metabolite profiling and phytochemical analysis based on RP-HPLC-DAD-QTOF-MS and MS / MS for discovering new bioactive compounds in Rumex algeriensis flowers and stems. Phytochemical Analysis. 2020; 2020: 1–20. DOI: https://doi.org/10.1002/pca.2928
Pizzino G., Irrera N., Cucinotta M., et al. Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity. 2017; 2017: 1–13. DOI: https://doi.org/10.1155/2017/8416763
Al-Assaf I., Khazem M. Antioxidant Activity of Total phenols and Flavonoids extracted from Echinops polyceras roots grown in Syria. Iraqi Journal of Pharmaceutical Sciences. 2021; 30: 261–268. DOI: https://doi.org/10.31351/vol30iss2pp261-268
Abu-darwish D., Shibli R., Al-abdallat A. M. Phenolic Compounds and Antioxidant Activity of Chiliadenus montanus ( Vhal .) Brullo . grown in vitro. Jordan Journal of Pharmaceutical Sciences. 2024; 17: 611–628. DOI: https://doi.org/10.35516/jjps.v17i3.2248
Li Y., Jiang J. Health functions and structure–activity relationships of natural anthraquinones from plants. Food & Function. 2018; 2018: 6063–6080. DOI: https://doi.org/10.1039/C8FO01569D
Shafiq N., Saleem M., Kousar S., et al. Investigation of Genus Rumex for Their Biologically Active Constituents. RJLBPCS. 2017; 2: 148–163.
Vasas A., Orbán-Gyapai O., Hohmann J. The Genus Rumex: Review of traditional uses, phytochemistry and pharmacology. Journal of Ethnopharmacology. 2015; 9: 1–94. DOI: https://doi.org/10.1016/j.jep.2015.09.001
Li J-J., Li Y-X., Li N., et al. The genus Rumex (Polygonaceae): an ethnobotanical, phytochemical and pharmacological review. Natural Products and Bioprospecting. 2022; 12: 1–29. DOI: https://doi.org/10.1007/s13659-022-00346-z
Sarı F., Koçyiğit M. Ethnobotanical Usages of the Turkish Rumex Taxa. Turkish Journal of Bioscience and Collections. 2021; 5: 123–140. DOI: https://doi.org/10.26650/tjbc.2021930272
MOUTERDE P. NOUVELLE FLORE DU LIBAN ET DE LA SYRIE. TOME PREMI. BEYROUTH: ÉDITIONS DE L’IMPRIMERIE CATHOLIQUE, 1966. Epub ahead of print 1966. DOI: 10.4000/books.editionsmsh.2669. DOI: https://doi.org/10.4000/books.editionsmsh.2669
Keskin M., Severoğlu Z. The genus of Rumex (Polygonaceae) in Istanbul and the new check-list of Polygonaceae in Türkiye. Frontiers in Life Sciences and Related Technologies. 2023; 4: 13–19. DOI: https://doi.org/10.51753/flsrt.1146228
Kılıç I., Yeşiloğlu Y., Bayrak Y., et al. Antioxidant Activity of Rumex conglomeratus P . Collected from Turkey. Asian J Chem. 2013; 25. Epub ahead of print. DOI: 10.14233/ajchem.2013.15130. DOI: https://doi.org/10.14233/ajchem.2013.15130
Marrelli M., Cristaldi B., Menichini F., et al. Inhibitory effects of wild dietary plants on lipid peroxidation and on the proliferation of human cancer cells. Food and Chemical Toxicology. 2015; 86: 16–24. DOI: https://doi.org/10.1016/j.fct.2015.09.011
Ramírez A., Luz S., Díaz B., et al. Actividad Antibacteriana De Extractos Y Fracciones Del Ruibarbo (Rumex conglomeratus). Scientia Et Technica. 2007; 13: 397–400.
Orbán-Gyapai O., Liktor-Busa E., Kúsz N., et al. Antibacterial screening of Rumex species native to the Carpathian Basin and bioactivity-guided isolation of compounds from Rumex aquaticus. Fitote. 2017. Epub ahead of print.
DOI: 10.1016/j.fitote.2017.03.009. DOI: https://doi.org/10.1016/j.fitote.2017.03.009
Ghannam M., Shammaa E., Ali A. Determining the quality of the powders of Xanthium Strumarium and Xanthium Spinosum by microscopic examination and preliminary tests. SN Applied Sciences. 2020; 2:1–12. DOI: https://doi.org/10.1007/s42452-020-03390-x
Mondal S., Rahaman S.T. Flavonoids : A vital resource in healthcare and medicine. Pharmacy & Pharmacology International Journal. 2020; 8:91–104. DOI: https://doi.org/10.15406/ppij.2020.08.00285
Nortjie E., Basitere M., Moyo D., et al. Extraction Methods , Quantitative and Qualitative Phytochemical Screening of Medicinal Plants for Antimicrobial Textiles : A Review. Plants. 2022; 11:1–17. DOI: https://doi.org/10.3390/plants11152011
Shaikh J.R., Patil M. Qualitative tests for preliminary phytochemical screening : An overview. International Journal of Chemical Studies. 2020; 8:603–608. DOI: https://doi.org/10.22271/chemi.2020.v8.i2i.8834
Zohra S.F., Meriem B., Samira S., et al. Phytochemical Screening and identification of some compounds from Mallow. Journal of Natural Products and Plant Resources. 2012; 2:512–516.
Dilshad R., Batool R. Antibacterial and Antioxidant Potential of Ziziphus jujube , Fagonia Arabica , Mallotus phillipensis and Hemidesmus Indicus. Jordan Journal of Pharmaceutical Sciences. 2022; 15:413–427. DOI: https://doi.org/10.35516/jjps.v15i3.417
Hussain H.G., Agha M.I.H. Evaluation of the thrombolytic activity of the methanolic extract of Melia azedarach fruits and leaves in vitro. Journal of Advanced Biotechnology and Experimental Therapeutics. 2022; 5: 634–641. DOI: https://doi.org/10.5455/jabet.2022.d142
Khatib R., Al-Makky K. Anti-Oxidant and Anti-Bacterial Activities of Sinapis alba L. (Leaves, Flowers and Fruits) Grown in Syria. Bulletin of Pharmaceutical Sciences Assiut University 2021; 44: 339–347. DOI: https://doi.org/10.21608/bfsa.2021.207153
Sakulpanich A., Gritsanapan W. Extraction Method for High Content of Anthraquinones From Cassia Fistula Pods. J Health Res. 2008; 22:167–172.
Humadi S., Obaid A. Anthroaquinone Glycosides (Introduction and Extraction) Lab. Karblaa - Iraq: AL ZAHARAWI UNIVERSITY COLLEGE DEPARTMENT OF PHARMACY, 2019.
Khatoon M., Islam E., Islam R., et al. Estimation of total phenol and in vitro antioxidant activity of Albizia procera leaves. BMC Research Notes. 2013; 6:1–7. DOI: https://doi.org/10.1186/1756-0500-6-121
Truong D., Nguyen D.H., Ta N.T.A., et al. Evaluation of the Use of Different Solvents for Phytochemical Constituents, Antioxidants, and In Vitro Anti-Inflammatory Activities of Severinia buxifolia. Journal of Food Quality. 2019; 2019:1–9. DOI: https://doi.org/10.1155/2019/8178294
María R., Shirley M., Xavier C., et al. Preliminary Phytochemical Screening, Total Phenolic Content and Antibacterial Activity of Thirteen Native Species from Guayas Province Ecuador. Journal of King Saud University - Science. 2017. Epub ahead of print.
DOI: 10.1016/j.jksus.2017.03.009. DOI: https://doi.org/10.1016/j.jksus.2017.03.009
Mekonnen A., Desta W. Comparative study of the antioxidant and antibacterial activities of Rumex abyssinicus with commercially available Zingiber officinale and Curcuma longa in Bahir Dar city , Ethiopia. Chemical and Biological Technologies in Agriculture. 2021; 8:1–11. DOI: https://doi.org/10.1186/s40538-020-00198-0
Gebrie E., Makonnen E., Debella A., et al. Phytochemical screening and pharmacological evaluations for the antifertility effect of the methanolic root extract of Rumex steudelii. Journal of Ethnopharmacology. 2005; 96:139–143. DOI: https://doi.org/10.1016/j.jep.2004.08.026
Jaradat N., Hawash M. anti-obesity activities of Rumex rothschildianus Aarons . extracts. BMC Complementary Medicine and Therapies. 2021; 21:1–11. DOI: https://doi.org/10.1186/s12906-021-03282-6
Ammar N., Ayoub N., El-Ahmady S., et al. Phytochemical and Cytotoxic Studies of Rumex pictus Forssk. and Rumex vesicarius L. (Family Polygonaceae), Growing in Egypt. European Journal of Medicinal Plants. 2015; 10:1–13. DOI: https://doi.org/10.9734/EJMP/2015/19830
Hafaz M.F., Soliman H.M., Abbas M.A., et al. Potential assessment of rumex spp. As a source of bioactive compounds and biological activity. Biointerface Research in Applied Chemistry. 2022; 12:1824–1834. DOI: https://doi.org/10.33263/BRIAC122.18241834
del Valle J.C., Buide M.L., Casimiro-Soriguer I., et al. On flavonoid accumulation in different plant parts: variation patterns among individuals and populations in the shore campion (Silene littorea). Frontiers in Plant Science. 2015; 6:1–13. DOI: https://doi.org/10.3389/fpls.2015.00939
Pérez M., Dominguez-López I., Lamuela-Raventós R.M. The Chemistry Behind the Folin-Ciocalteu Method for the Estimation of (Poly)phenol Content in Food: Total Phenolic Intake in a Mediterranean Dietary Pattern. Journal of Agricultural and Food Chemistry. 2023; 71:17543–17553. DOI: https://doi.org/10.1021/acs.jafc.3c04022
Lawag I.L., Nolden E.S., Schaper A.A.M., et al. A Modified Folin-Ciocalteu Assay for the Determination of Total Phenolics Content in Honey. Applied Sciences (Switzerland). 2023; 13:1–17. DOI: https://doi.org/10.3390/app13042135
Idris O.A., Wintola O.A., Afolayan A.J. Asian Paci fi c Journal of Tropical Biomedicine. Asian Pacific Journal of Tropical Biomedicine. 2017; 7:1071–1078. DOI: https://doi.org/10.1016/j.apjtb.2017.10.008
Chelly M., Chelly S., Occhiuto C., et al. Comparison of Phytochemical Profile and Bioproperties of Methanolic Extracts from Different Parts of Tunisian Rumex roseus. Chemistry & Biodiversity. 2021; 18:1–11. DOI: https://doi.org/10.1002/cbdv.202100185
Eom T., Kim E., Kim J. In Vitro Antioxidant, Antiinflammation, and Anticancer Activities and Anthraquinone Content from Rumex crispus Root Extract and Fractions. Antioxidants. 2020; 9:1–13. DOI: https://doi.org/10.3390/antiox9080726
Beddou F., Bekhechi C., Ksouri R., et al. Potential assessment of Rumex vesicarius L. as a source of natural antioxidants and bioactive compounds. Journal of Food Science and Technology. 2014; 52:3549–3560. DOI: https://doi.org/10.1007/s13197-014-1420-9
Elzaawely A.A., Tawata S. Antioxidant Capacity and Phenolic Content of Rumex dentatus L . Grown in Egypt. Journal of Crop Science and Biotechnology. 2012; 15:59–64. DOI: https://doi.org/10.1007/s12892-011-0063-x
Chien S., Wu Y., Chen Z., et al. Naturally Occurring Anthraquinones : Chemistry and Therapeutic Potential in Autoimmune Diabetes. Evidence-Based Complementary and Alternative Medicine. 2015; 2015:1–13. DOI: https://doi.org/10.1155/2015/357357
Khanal P., Jagdish B.M.P., Yasmin C. Anthraquinone Derivatives as an Immune Booster and their Therapeutic Option Against COVID ‑ 19. Natural Products and Bioprospecting. 2020; 10:325–335. DOI: https://doi.org/10.1007/s13659-020-00260-2
Wegiera M.A., Smolarz H.D., Wianowska D., et al. Anthracene Derivatives in Some Species Of Rumex L. Genus. Acta Societatis Botanicorum Poloniae. 2007; 76:103–108. DOI: https://doi.org/10.5586/asbp.2007.013
Seitimova G.A., Shokan A.K., Tolstikova T.G., et al. Antiulcer Activity of Anthraquinone–Flavonoid Complex of Rumex tianschanicus Losinsk. Molecules. 2023; 28:2347. DOI: https://doi.org/10.3390/molecules28052347
Litvinenko Y.A., Muzychkina R.A. Phytochemical investigation of biologically active substances in certain Kazakhstan Rumex species. 1. Chemistry of Natural Compounds. 2003; 39:446–449. DOI: https://doi.org/10.1023/B:CONC.0000011117.01356.4c
Elazzouzi H., Zekri N. Total phenolic and flflavonoid contents of Anacyclus pyrethrum Link plant extracts and their Antioxidant activity. Karbala International Journal of Modern Science. 2019; 5:278–287. DOI: https://doi.org/10.33640/2405-609X.1269
Alkhatib R. Chemical Composition of Essential Oils Total Phenols and Antioxidant Activity of Achillea fragrantissima and A . santolina Grown in Syria. Jordan Journal of Pharmaceutical Sciences. 2024; 17: 594–602. DOI: https://doi.org/10.35516/jjps.v17i3.2389
Kasote D.M., Katyare S.S., Hegde M.V., et al. Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences. 2015; 11:982–991. DOI: https://doi.org/10.7150/ijbs.12096
Dulo B., Phan K., Githaiga J., et al. Natural Quinone Dyes: A Review on Structure, Extraction Techniques, Analysis and Application Potential. Waste and Biomass Valorization. 2021; 12: 6339–6374. DOI: https://doi.org/10.1007/s12649-021-01443-9
Zhang R, Huang C., Wu F., et al. Review on melanosis coli and anthraquinone-containing traditional Chinese herbs that cause melanosis coli. Frontiers in Pharmacology. 2023; 14:1–17. DOI: https://doi.org/10.3389/fphar.2023.1160480







