تقييم السمية الجينية والقدرة المضاداة للأكسدة في مستخلصات أوراق عشبة الدم الشرقية في الفئران Ajuga orientalis L. (Lamiaceae)
DOI:
https://doi.org/10.35516/jjps.v17i4.2466الكلمات المفتاحية:
الأنوية الصغيرة، نبات الدم الشرقي، نبات طبي، إجمالي نشاط القدرة المضادة للأكسدةالملخص
يعد نبات عشبة الدم الشرقية من النباتات العطرية المستوطنة لمنطقة شرق البحر الابيض المتوسط والتي تستخدم بشكل شائع في الطب الشعبي في الاردن والدول المجاورة. على الرغم من استعمالها الواسع، إلا أنه لا توجد دراسات سمية على مستخلصات اوراقها. تهدف هذه الدراسة لتقييم سمية هذا النبات في مسخلصات الاوراق عن طريق الايثانول والماء لتقييم باستخدام اختبار تكوين الأنوية الصغيرة في كريات الدم الحمراء الصبغية السوية في الحمض النووي الريبوزي منقوص الأكسجين للفئران (DNA) وايضا لتقييم إجمالي نشاط القدرة المضادة للأكسدة. لتحديد الجرعة القاتلة الوسيطة (50LD) لمستخلصات أوراق نبات الدم الشرقي، تم اعطاء تراكيز متفاوته ل 66 من ذكور فأر Balb/c. تم حقن الفئران يوميا بداخل البطن بالتراكيز التالية 4000 و2000 و1000 و500 ملغ/كغ وتم استخدام 3 مجموعات كضوابط ولمدة 28 يوماً. تم فحص تكون الأنوية الصغيرة في كريات الدم الحمراء العادية، وتم تقييم عينات الكبد لقياس القدرة الكلية المضادة للأكسدة.كان تركيزالجرعة القاتلة الوسيطة لكلا المستخلصين 4000 ملغ/كغ، مع زيادة معنوية في تكوين الأنوية الصغيرة في كريات الدم الحمراء العادية كلما زاد تركيز الجرعة. اظهرت النتائج انخفاض في قيم إجمالي نشاط القدرة المضادة للأكسدة في كلا المستخلصين مقارنة بالضوابط. تشير النتائج إلى وجود سمية جينية لمستخلصات أوراق نبات الدم الشرقي في الفئران ، مما يحث على الحذر في استهلاكها من قبل البشر. يجب إجراء المزيد من الأبحاث لتقييم سلامتها وسميتها بشكل شامل، خاصةً مع استخدامها التقليدي الواسع في الطب الشعبي.
المراجع
Oran S.A., Althaher A.R. and Shhab M.A. Al Chemical Composition , in Vitro Assessment of Antioxidant Properties and Cytotoxicity Activity of Ethanolic and Aqueous Extracts of Ajuga Orientalis L . ( Lamiaceae ). J. Pharm. Pharmacogn. Res. 2022; 10, 486–495. DOI: https://doi.org/10.56499/jppres22.1344_10.3.486
Mensah M.L.K., Komlaga G., Forkuo A.D., Firempong C., Anning K., Komlaga G., Dickson R.A., Forkuo D., Firempong C., Anning K., et al. Toxicity and Safety Implications of Herbal Medicines Used in Africa Toxicity and Safety Implications of Herbal Medicines Used in Africa. In Herbal Medicine; Builders, P.F., Ed.; IntechOpen, 2019.
Kahaliw W., Hellman B. and Engidawork E. Genotoxicity Study of Ethiopian Medicinal Plant Extracts on HepG2 Cells. BMC Complement. Altern. Med. 2018; 18: 1–9. doi: 10.1186/s12906-017-2056-x. DOI: https://doi.org/10.1186/s12906-017-2056-x
V K. Toxicological Survey of African Medicinal Plants; V, K., Ed.; 1st ed.; London: Elsevier Inc. 2014.
Ferreira-machado S.C., Rodrigues M.P., Nunes A.P.M., Bezerra R.J.A.C., Caldeira-de-araujo A. Genotoxic Potentiality of Aqueous Extract Prepared from Chrysobalanus Icaco L . Leaves. Toxicol. Lett. 2004.
: 481–487, doi: 10.1016/j.toxlet.2004.03.014. DOI: https://doi.org/10.1016/j.toxlet.2004.03.014
Bardoloi A. and Soren A.D. Genotoxicity Induced by Medicinal Plants. Bull. Natl. Res. Cent. 2022. doi: 10.1186/s42269-022-00803-2. DOI: https://doi.org/10.1186/s42269-022-00803-2
Melo-Reis P., Bezerra L., Vale M., Canhête R., Chen-Chen L. Assessment of the Mutagenic and Antimutagenic Activity of Synadenium Umbellatum Pax Latex by Micronucleus Test in Mice. Brazilian J. Biol. 2011; 71: 169–174. doi: 10.1590/s1519-69842011000100024. DOI: https://doi.org/10.1590/S1519-69842011000100024
Verschaeve L. NPC Natural Product Communications. Nat. Prod. Commun. 2015; 10: 1489–1493. doi: 10.1177/1934578X1501000843. DOI: https://doi.org/10.1177/1934578X1501000843
Yonekubo B.T., Miranda H. D.e., Alves C., Marques D.S., Perazzo F.F., César P., Rosa P., Gaivão O.N.D.M., Maistro E.L., Marques S., et al. The Genotoxic Effects of Fruit Extract of Crataegus Oxyacantha ( Hawthorn ) in Mice. J. Toxicol. Environ. Heal. Part A. 2018; 81: 974–982. doi: 10.1080/15287394.2018.1503982. DOI: https://doi.org/10.1080/15287394.2018.1503982
Shin S., Yi J.M., Kim N.S., Chan-Sung Park Kim S.H., Ok-Sun Bang Aqueous Extract of Forsythia Viridissima Fruits: Acute Oral Toxicity and Genotoxicity Studies. J. Ethnopharmacol. 2020; 249: 112381. doi: 10.1016/j.jep.2019.112381. DOI: https://doi.org/10.1016/j.jep.2019.112381
Harutyunyan K., Balayan K., Tadevosyan G., Hayrapetyan M., Musayelyan R., Grigoryan R., Khondkaryan L., Sarkisyan N. and Babayan N. Genotoxic Potential of Selected Medicinal Plant Extracts in Human Whole Blood Cultures. J. HerbMed Pharmacol. 2019; 8: 160–162, doi: 10.15171/jhp.2019.25. DOI: https://doi.org/10.15171/jhp.2019.25
Adwan G. In Vitro Assessment of Antibacterial Activity and Potential Genotoxic Effect of Fruit Extracts of Capparis Spinosa L . Plant. Jordan J. Pharm. Sci. 2023; 16: 322–329. DOI: https://doi.org/10.35516/jjps.v16i2.517
Oran S.A. The Status of Medicinal Plants in Jordan. J. Agric. Sci. Technol. A. 2014; 4, 461–467.
Abu-Irmaileh B.E. and Afifi F.U. Herbal Medicine in Jordan with Special Emphasis on Commonly Used Herbs. J. Ethnopharmacol. 2003; 89: 193–197. doi: 10.1016/S0378-8741(03)00283-6. DOI: https://doi.org/10.1016/S0378-8741(03)00283-6
El-alali A., Zoubi A. A.l., Gharaibeh M., Tawaha K. and Alali F.Q. Phytochemical and Biological Investigation of Nitraria Retusa Asch. Jordan J. Pharm. Sci. 2012; 5: 155–163.
Uritu C.M., Mihai C.T., Stanciu G.D., Dodi G., Alexa-Stratulat T., Luca A., Leon-Constantin M.M., Stefanescu R., Bild V., Melnic S., et al. Medicinal Plants of the Family Lamiaceae in Pain Therapy: A Review. Pain Res. Manag. 2018; 2018. doi: 10.1155/2018/7801543. DOI: https://doi.org/10.1155/2018/7801543
Abu-Odeh A., Fino L., Al-Absi G., Alnatour D., Al-Darraji M., Shehadeh M. and Suaifan G. Medicinal Plants of Jordan: Scoping Review. Heliyon. 2023; 9: e17081. doi: 10.1016/j.heliyon.2023.e17081. DOI: https://doi.org/10.1016/j.heliyon.2023.e17081
Brahmi F., Khaled-khodja N., Bezeghouche R., Bouharis S., Elsebai M.F., Madani K. and Boulekbache-makhlouf L. Ethnobotanical Study of the Most Lamiaceae Used as Medicinal and Culinary Plants by the Population of Bejaia Province , Algeria. Jordan J. Pharm. Sci. 2023; 16: 268–281. DOI: https://doi.org/10.35516/jjps.v16i2.1330
Taha-Salaime L., Davidovich-Rikanati R., Sadeh A., Abu-Nassar J., Marzouk-Kheredin S., Yahyaa Y., Ibdah M., Ghanim M., Lewinsohn E., Inbar M., et al. Phytoecdysteroid and Clerodane Content in Three Wild Ajuga Species in Israel. ACS Omega. 2019; 4: 2369–2376. doi: 10.1021/acsomega.8b03029. DOI: https://doi.org/10.1021/acsomega.8b03029
Göger F., Köse Y.B., Göger G. and Demirci F. Phytochemical Characterization of Phenolics by LC-MS/MS and Biological Evaluation of Ajuga Orientalis from Turkey. Bangladesh J. Pharmacol. 2015; 10: 639–644.
doi: 10.3329/bjp.v10i3.23500. DOI: https://doi.org/10.3329/bjp.v10i3.23500
Luan F., Han K., Li M., Zhang T., Liu D., Yu L. and Lv H. Ethnomedicinal Uses, Phytochemistry, Pharmacology, and Toxicology of Species from the Genus Ajuga L.: A Systematic Review. Am. J. Chin. Med. 2019; 47: 959–1003.
doi: 10.1142/S0192415X19500502. DOI: https://doi.org/10.1142/S0192415X19500502
Sajjadi S.E. and Ghannadi A. Volatile Oil Composition of the Aerial Parts of Ajuga Orientalis L . from Iran §. Zeitschrift für Naturforsch. 2004; 59: 166–168. DOI: https://doi.org/10.1515/znc-2004-3-404
Gautam R., Jachak S.M. and Saklani A. Anti-Inflammatory Effect of Ajuga Bracteosa Wall Ex Benth. Mediated through Cyclooxygenase (COX) Inhibition. J. Ethnopharmacol. 2011; 133: 928–930.
doi: 10.1016/J.JEP.2010.11.003. DOI: https://doi.org/10.1016/j.jep.2010.11.003
Zengin G., Ceylan R., Katani J., Aktumsek A., Mati S., Boroja T., Mihailovi V., Seebaluck-sandoram R., Mollica A. and Fawzi M. Exploring the Therapeutic Potential and Phenolic Composition of Two Turkish Ethnomedicinal Plants – Ajuga Orientalis L . and Arnebia Densi Fl Ora (Nordm .). Ind. Crop. Prod. 2018; 116: 240–248. doi: 10.1016/j.indcrop.2018.02.054. DOI: https://doi.org/10.1016/j.indcrop.2018.02.054
Shabbar I.M.S., Maslat A., Shabbar I.M.S., Genotoxicity A.M., Rich L.A., Fruit C. and Using J. Genotoxicity of Ecballium Elaterium (L) A Rich Cucurbitaceae Fruit Juice Using Micronucleus Assay and DNA Single Strand Break Techniques. Internet J. Heal. 2012; 6: 1–12. doi: 10.5580/1b75. DOI: https://doi.org/10.5580/1b75
Heddle J.A., Hite M., Kirkhart B., Mavournin K., MacGregor J.T., Newell G.W. and Salamone M.F. The Induction of Micronuclei as a Measure of Genotoxicity. A Report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat. Res. Genet. Toxicol. 1983; 123: 61–118. doi: 10.1016/0165-1110(83)90047-7. DOI: https://doi.org/10.1016/0165-1110(83)90047-7
Schmid W. The Micronucleus Test. Mutat. Res. Mutagen. Relat. Subj. 1975; 31: 9–15.
doi: 10.1016/0165-1161(75)90058-8. DOI: https://doi.org/10.1016/0165-1161(75)90058-8
Khalil A.M., Salman W.K. and Al-Qaoud K.M. Evaluation of Genotoxic Potential of 2-(Bromoacetamido) Phenylboronic Acid on Balb/C Mice Peripheral Blood Cells Using in Vivo Micronucleus Assay. Jordan J. Pharm. Sci. 2017; 10: 103–112. doi: 10.12816/0040698. DOI: https://doi.org/10.12816/0040698
Petrovska B.B. Historical Review of Medicinal Plants’ Usage. Pharmacogn. Rev. 2012; 6: 1–5. doi: 10.4103/0973-7847.95849. DOI: https://doi.org/10.4103/0973-7847.95849
Ahmad R., Ahmad N., Naqvi A.A., Shehzad A. and Al-Ghamdi M.S. Role of Traditional Islamic and Arabic Plants in Cancer Therapy. J. Tradit. Complement. Med. 2017; 7: 195–204. doi: 10.1016/j.jtcme.2016.05.002. DOI: https://doi.org/10.1016/j.jtcme.2016.05.002
Oloya B., Namukobe J., Ssengooba W., Afayoa M. and Byamukama R. Phytochemical Screening, Antimycobacterial Activity and Acute Toxicity of Crude Extracts of Selected Medicinal Plant Species Used Locally in the Treatment of Tuberculosis in Uganda. Trop. Med. Health. 2022; 50.
doi: 10.1186/s41182-022-00406-7. DOI: https://doi.org/10.1186/s41182-022-00406-7
El Hilaly J., Israili Z.H. and Lyoussi B. Acute and Chronic Toxicological Studies of Ajuga Iva in Experimental Animals. J. Ethnopharmacol. 2004; 91: 43–50. doi: 10.1016/j.jep.2003.11.009. DOI: https://doi.org/10.1016/j.jep.2003.11.009
Hao D., cheng and Xiao P. gen Pharmaceutical Resource Discovery from Traditional Medicinal Plants: Pharmacophylogeny and Pharmacophylogenomics. Chinese Herb. Med. 2020; 12: 104–117. doi: 10.1016/j.chmed.2020.03.002. DOI: https://doi.org/10.1016/j.chmed.2020.03.002
Rohit Sahu, Goli Divakar, K.D. IN VIVO RODENT MICRONUCLEUS ASSAY OF GMELINA ARBOREA ROXB (GAMBHARI) EXTRACT. J. Adv. Pharm. Technol. Res. 2010; 1: 22–29. DOI: https://doi.org/10.4103/2231-4040.70516
Kwasniewska J. and Bara A.W. Plant Cytogenetics in the Micronuclei Investigation—The Past, Current Status, and Perspectives. Int. J. Mol. Sci. 2022; 23.
doi: 10.3390/ijms23031306. DOI: https://doi.org/10.3390/ijms23031306
Luzhna L., Kathiria P. and Kovalchuk O. Micronuclei in Genotoxicity Assessment : From Genetics to Epigenetics and Beyond. Front. Genet. 2013; 4: 1–17. doi: 10.3389/fgene.2013.00131. DOI: https://doi.org/10.3389/fgene.2013.00131
Phillips D. and Arlt V. Genotoxicity: Damage to DNA and Its Consequencese. In Molecular, Clinical and Environmental Toxicology. 2009; 87–110. DOI: https://doi.org/10.1007/978-3-7643-8336-7_4
Zhou J., Ouedraogo M., Qu F. and Duez P. Potential Genotoxicity of Traditional Chinese Medicinal Plants and Phytochemicals: An Overview. Phyther. Res. 2013; 27: 1745–1755.doi: 10.1002/ptr.494 DOI: https://doi.org/10.1002/ptr.4942
Kayani W.K., Dilshad E., Ahmed T., Ismail H. and Mirza B. Evaluation of Ajuga Bracteosa for Antioxidant, Anti-Inflammatory, Analgesic, Antidepressant and Anticoagulant Activities. BMC Complement. Altern. Med. 2016; 16: 1–13.
doi: 10.1186/s12906-016-1363-y. DOI: https://doi.org/10.1186/s12906-016-1363-y
Suryavanshi A., Kumar S., Kain D. and Arya A. Chemical Composition, Antioxidant and Enzyme Inhibitory Properties of Ajuga Parviflora Benth. Biocatal. Agric. Biotechnol. 2021; 37: 102191. doi: 10.1016/j.bcab.2021.102191. DOI: https://doi.org/10.1016/j.bcab.2021.102191
Esposito T., Sansone F., Auriemma G., Franceschelli S., Pecoraro M., Picerno P., Aquino R.P. and Mencherini T. Study on Ajuga Reptans Extract: A Natural Antioxidant in Microencapsulated Powder Form as an Active Ingredient for Nutraceutical or Pharmaceutical Purposes. Pharmaceutics. 2020; 12: 1–23.
doi: 10.3390/pharmaceutics12070671. DOI: https://doi.org/10.3390/pharmaceutics12070671
Venkatesan T., Choi Y.W. and Kim Y.K. Effect of an Extraction Solvent on the Antioxidant Quality of Pinus Densiflora Needle Extract. J. Pharm. Anal. 2019; 9: 193–200. doi: 10.1016/j.jpha.2019.03.005. DOI: https://doi.org/10.1016/j.jpha.2019.03.005
Bonnefont-Rousselot D., Rouscilles A., Bizard C., Delattre J., Jore D. and Gardès-Albert M. Antioxidant Effect of Ethanol toward in Vitro Peroxidation of Human Low-Density Lipoproteins Initiated by Oxygen Free Radicals. Radiat. Res. 2001; 155: 279–287. doi: 10.1667/0033-7587(2001)155[0279: AEOETI]2.0.CO;2. DOI: https://doi.org/10.1667/0033-7587(2001)155[0279:AEOETI]2.0.CO;2
Khlebnikov A.I., Schepetkin I.A., Domina N.G., Kirpotina L.N. and Quinn M.T. Improved Quantitative Structure-Activity Relationship Models to Predict Antioxidant Activity of Flavonoids in Chemical, Enzymatic, and Cellular Systems. Bioorganic Med. Chem. 2007; 15: 1749–1770.
doi: 10.1016/j.bmc.2006.11.037 DOI: https://doi.org/10.1016/j.bmc.2006.11.037







