السولفونات من الهيدروكسيكسانثون كعامل مضاد للسل: التوليف التسلسلي في خطوة واحدة، التحليل، والتقييم المبدئي باستخدام التفاعل الجزيئي

المؤلفون

  • Emmy Yuanita قسم الكيمياء، كلية الرياضيات والعلوم الطبيعية، جامعة ماتارام، ماتارام، إندونيسيا
  • Ima Arum Lestarini قسم الطب، كلية الطب، جامعة ماتارام، ماتارام، إندونيسيا
  • Ni Komang Tri Dharmayani قسم الكيمياء، كلية الرياضيات والعلوم الطبيعية، جامعة ماتارام، ماتارام، إندونيسيا
  • Baiq Nila Sari Ningsih قسم الكيمياء، كلية الرياضيات والعلوم الطبيعية، جامعة ماتارام، ماتارام، إندونيسيا
  • Maulida Septiyana قسم الكيمياء، كلية الرياضيات والعلوم الطبيعية، جامعة ماتارام، ماتارام، إندونيسيا
  • Maria Ulfa قسم الكيمياء، كلية الرياضيات والعلوم الطبيعية، جامعة ماتارام، ماتارام، إندونيسيا
  • . Sudirman قسم الكيمياء، كلية الرياضيات والعلوم الطبيعية، جامعة ماتارام، ماتارام، إندونيسيا
  • Taufan Hari Sugara جامعة محمدية ماتارام، لومبوك الغربية، إندونيسيا؛ مركز أبحاث الصناعات البيولوجية البحرية والبرية، BRIN، ماتارام، إندونيسيا

DOI:

https://doi.org/10.35516/jjps.v18i2.2850

الكلمات المفتاحية:

هيدروكسيكسانثون، سولفوني، تفاعل جزيئي، مضاد للسل

الملخص

تم تبسيط توليف المركبات السولفونية من الهيدروكسيكسانثون (4a و4b) إلى تسلسل واحد بهدف تقليل عدد الخطوات وزيادة الكفاءة. كما درست هذه الدراسة التفاعل الجزيئي لهذه المركبات المحضرة كعوامل محتملة ضد مرض السل. باستخدام برنامج AutoDock Vina، أظهرت نتائج التفاعل الجزيئي أن المركبات 4a و4b تظهر نشاطًا واعدًا ضد مرض السل من خلال ارتباطها الفعال بأنزيم DHPS. هذا الإنزيم، الذي يعد أمرًا حيويًا لنمو المتفطرة السلية، كان الهدف المحدد في الدراسة، مما يبرز قدرة المركبات على تثبيط DHPS وملاءمتها كأدوية مضادة للسل.

المراجع

Jones R. M., Adams K. N., Eldesouky H. E. and Sherman D. R. The evolving biology of Mycobacterium tuberculosis drug resistance. Front Cell Infect Microbiol. 2022; 12:1027394. DOI: https://doi.org/10.3389/fcimb.2022.1027394

Seung K. J., Keshavjee S. and Rich M. L. Multidrug-Resistant Tuberculosis and Extensively Drug-Resistant Tuberculosis. Cold Spring Harb Perspect Med. 2015; 5(9). DOI: https://doi.org/10.1101/cshperspect.a017863

Tripathi R. P., Tewari N., Dwivedi N. and Tiwari V. K. Fighting tuberculosis: an old disease with new challenges. Med Res Rev. 2005; 25(1):93-131. DOI: https://doi.org/10.1002/med.20017

Miethke M., Pieroni M., Weber T., Brönstrup M., Hammann P., Halby L., Arimondo P. B., Glaser P., Aigle B., Bode H. B., Moreira R., Li Y., Luzhetskyy A., Medema M. H., Pernodet J.-L., Stadler M., Tormo J. R., Genilloud O. and et al. Towards the sustainable discovery and development of new antibiotics. Nat Rev Chem. 2021; 5(10):726-749. DOI: https://doi.org/10.1038/s41570-021-00313-1

Ventola C. L. The antibiotic resistance crisis: part 1: causes and threats. P T. 2015; 40(4):277-283.

O’Neill J. Tackling a Global Health Crisis: Initial step. Wellcome Collection, London, 2015.

Irianti T., Pratiwi S. U. T. and Yasmin I. F. Antituberculosis Activity of Active Compound of Ethyl Acetate Extract for Patikan Kebo (Euphorbia hirta L.). Jordan J Pharm Sci. 2022; 15(4):461-473. DOI: https://doi.org/10.35516/jjps.v15i4.671

Yuanita E., Sudirman, Dharmayani N. K. T., Ulfa M. and Syahri J. Quantitative structure-activity relationship (QSAR) and molecular docking of xanthone derivatives as anti-tuberculosis agents. J Clin Tuberc Other Mycobact Dis. 2020; 21:100203. DOI: https://doi.org/10.1016/j.jctube.2020.100203

Yuanita E., Pranowo H. D., Siswanta D., Swasono R. T., Mustofa M., Zulkarnain A. K., Syahri J. and Jumina J. One-Pot Synthesis, Antioxidant Activity and Toxicity Evaluation of Some Hydroxyxanthones. Chem Chem Technol. 2018; 12(3):290-295. DOI: https://doi.org/10.23939/chcht12.03.290

Yuanita E., Jannah B. K., Ulfa M., Sudirman, Ningsih B. N. S. and Dharmayani N. K. T. C-prenylation of 1,3 dihydroxyxanthone: synthesis, characterization and antibacterial activity. Acta Chim Asiana. 2023; 6(1):279-286. DOI: https://doi.org/10.29303/aca.v6i1.149

Yuanita E., Sudarma I. M., Sudewiningsih N. M., Syahri J., Dharmayani N. K. T., Sudirman, Ulfa M. and Sumarlan I. Antibacterial activity and molecular docking studies of series hydroxyxanthone. AIP Conf Proc. 2020; 2243(1):020032. DOI: https://doi.org/10.1063/5.0001090

Yuanita E., Pranowo H. D., Jumina J. and Mustofa M. Design of Hydroxy Xanthones Derivatives as Anticancer Using Quantitative Structure-Activity Relationship. Asian J Pharm Clin Res. 2016; 9(2):180-185.

Pinzi L. and Rastelli G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int J Mol Sci. 2019; 20(18). DOI: https://doi.org/10.3390/ijms20184331

Yuanita E., Ulfa M., Sudirman, Sumarlan I., Sudarma I. M., Dharmayani N. K. T., Syahri J. and Jumina J. Synthesis, Cytotoxic Evaluation and Molecular Docking of Bromo-Substituted 1,3,6-Trihydroxyxanthone as Protein Tyrosine Kinase Inhibitor. Malays J Biochem Mol Biol. 2021; 23:24-32.

Syahri J., Yuanita E., Nurohmah B. A., Wathon M. B., Syafri R., Armunanto R. and Purnowo B. Xanthone as Antimalarial: QSAR Analysis, Synthesis, Molecular Docking and In-vitro Antimalarial Evaluation. Orient J Chem. 2017; 33(1):29-40. DOI: https://doi.org/10.13005/ojc/330104

Yuanita E., Sudirman, Dharmayani N. K. T., Ulfa M., Hadisaputra S. and Syahri J. Molecular docking of xanthone derivatives as therapeutic agent for Covid-19. Molekul. 2022; 17(1):1-9. DOI: https://doi.org/10.20884/1.jm.2022.17.1.5600

Aslan E. K., Han M. I., Khrisna V. S., Tamhev R., Dengiz C., Dogan S. D., Lhebert C., Mourey L., Tonjum T. and Gunduz M. G. Isoniazid Linked to Sulfonate Esters via Hydrazone Functionality: Design, Synthesis, and Evaluation of Antitubercular Activity. Pharmaceuticals (Basel). 2022; 15(10). DOI: https://doi.org/10.3390/ph15101301

A. Baca M. A., Sirawaraporn R., Turley S., Sirawaraporn W. and Hol W. G. J. Crystal structure of Mycobacterium tuberculosis 7,8-dihydropteroate synthase in complex with pterin monophosphate: new insight into the enzymatic mechanism and sulfa-drug action. J Mol Biol. 2000; 302(5):1193-1212. DOI: https://doi.org/10.1006/jmbi.2000.4094

Yuanita E., Pranowo H. D., Mustofa M., Swasono R. T., Syahri J. and Jumina J. Synthesis, Characterization and Molecular Docking of Chloro-substituted Hydroxyxanthone Derivatives. Chem J Moldova. 2019; 14(1):68-76. DOI: https://doi.org/10.19261/cjm.2018.520

Kiang L. C., Thơ L., Kim Y., Shah S. A. and Webber J. ChemInform Abstract: Synthesis of 1,3,6-Trioxygenated Prenylated Xanthone Derivatives as Potential Antitumor Agents. ChemInform. 2013; 44. DOI: https://doi.org/10.1002/chin.201308142

Yuanita E., Hidayah N., Umami M. R., Ningsih B. N. S., Dharmayani N. K. T., Sudirman and Ulfa M. Simple synthesis and characterization of sulfonate ester-substituted hydroxyxanthone. AIP Conf Proc. 2024; 3055(1):03000. DOI: https://doi.org/10.1063/5.0193645

Sudarma M., Yuanita E. and Suana I. W. Markovnikov addition of chlorosulfuric acid to eugenol isolated from clove oil. Indones J Chem. 2013; 13(2):181-184. DOI: https://doi.org/10.22146/ijc.21303

Mondal M., Puranik V. G. and Argade N. P. Facile Synthesis of 1,3,7-Trihydroxyxanthone and Its Regioselective Coupling Reactions with Prenal: Simple and Efficient Access to Osajaxanthone and Nigrolineaxanthone F. J Org Chem. 2006; 71(13):4992-4995. DOI: https://doi.org/10.1021/jo0606655

Zhao and Larock R. C. Synthesis of xanthones, thioxanthones, and acridones by the coupling of arynes and substituted benzoates. J Org Chem. 2007; 72(2):583-588. DOI: https://doi.org/10.1021/jo0620718

Qin W., Lan Z., Liu J., Huang H., Tang H. and Wang H. Synthesis and biological evaluation of 1,3-dihydroxyxanthone mannich base derivatives as anticholinesterase agents. Chem Cent J. 2013; 7(1):78. DOI: https://doi.org/10.1186/1752-153X-7-78

Sanabria E., Esteso M., Pérez-Redondo A., Vargas E. and Maldonado M. Synthesis and characterization of two sulfonated resorcinarenes: a new example of a linear array of sodium centers and macrocycles. Molecules. 2015; 20(6):1420-3049. DOI: https://doi.org/10.3390/molecules20069915

Chuesutham T., Sirivat A., Paradee N., Changkhamchom S., Wattanakul K., Anumart S., Krathumkhet N. and Khampim J. Improvement of sulfonated poly(ether ether ketone)/Y zeolite -SO3H via organo-functionalization method for direct methanol fuel cell. Renew Energy. 2019; 138:243-249. DOI: https://doi.org/10.1016/j.renene.2019.01.107

Stanzione F., Giangreco I. and Cole J.C. Use of molecular docking computational tools in drug discovery. Prog Med Chem. 2021; 60:273-343. DOI: https://doi.org/10.1016/bs.pmch.2021.01.004

Kharkar P.S., Warrier S. and Gaud R.S. Reverse docking: a powerful tool for drug repositioning and drug rescue. Future Med Chem. 2014; 6(3):333-342. DOI: https://doi.org/10.4155/fmc.13.207

Palomino J.C. and Martin A. The potential role of trimethoprim-sulfamethoxazole in the treatment of drug-resistant tuberculosis. Future Microbiol. 2016; 11(4):539-547. DOI: https://doi.org/10.2217/fmb.16.2

Egbujoe C., Okonkwo V.I., Onyeije U.C., Emeruwa C.N., Nkuzinna O.C., Egwuatu P.I., Amasiatu I.S., Onyemeziri A.C. and Okoro U.C. Design, synthesis, molecular docking and biological evaluation of novel leucine derived sulfamoyl pentanamides as antimicrobial and antioxidant agents. Jordan J Pharm Sci. 2024; 17(4):687-705. DOI: https://doi.org/10.35516/jjps.v17i4.2467

Hussein B., Bourghli L.M.S., Alzweiri M., Al-Hiari Y., Sini M.A., Alnabulsi S. and Al-Ghwairi B. Synthesis and biological evaluation of carbonic anhydrase III and IX inhibitors using gas chromatography with modified pH-sensitive pellets. Jordan J Pharm Sci. 2023; 16(2):426-439. DOI: https://doi.org/10.35516/jjps.v16i2.1470

التنزيلات

منشور

2025-06-25

كيفية الاقتباس

Yuanita, E., Lestarini, I. A., Dharmayani, N. K. T., Ningsih, B. N. S., Septiyana, M., Ulfa, M., Sudirman, ., & Sugara, T. H. (2025). السولفونات من الهيدروكسيكسانثون كعامل مضاد للسل: التوليف التسلسلي في خطوة واحدة، التحليل، والتقييم المبدئي باستخدام التفاعل الجزيئي. Jordan Journal of Pharmaceutical Sciences, 18(2), 305–316. https://doi.org/10.35516/jjps.v18i2.2850

إصدار

القسم

Articles