جسيمات نانوية من الفيبروين معدلة ببولي إيثيلين إيمين لإطلاق خاضع للتحكم كوسيلة محتملة للتوصيل الفموي للكويرسيتين
DOI:
https://doi.org/10.35516/jjps.v18i3.3082الكلمات المفتاحية:
الفيبروين، بولي إيثيلين إيمين، الجسيمات النانوية، الكويرسيتين، التوصيل الفمويالملخص
تُعد المركبات متعددة الفينول فئة كبيرة من المركبات الكيميائية المستخدمة في تطبيقات طبية حيوية متنوعة. ومع ذلك، فإن هذه المركبات عرضة للتدهور، لا سيما ضمن بيئات الأس الهيدروجيني المتباينة في الجهاز الهضمي، مما يعيق استخدامها في الإعطاء الفموي. لذلك، يهدف هذا العمل إلى تطوير جسيمات نانوية من الفيبروين (( FNP) وجسيمات فيبروين معدلة ببولي إيثيلين إيمين (PEI-FNP) لحماية وتوصيل الكويرسيتين (QC) )فمويًا، باعتباره نموذجًا للمركبات متعددة الفينول. تم تحضير الجسيمات باستخدام طريقتين مختلفتين: الامتزاز والتكثيف المشترك. أظهرت الصيغتان خصائص فيزيائية-كيميائية مناسبة للإعطاء الفموي، بما في ذلك أحجام نانوية (حوالي 700 نانومتر لـ FNP-QC وحوالي 200 نانومتر لـ PEI-FNP-QC)، توزيع حجمي ضيق (مؤشر تعددية التشتت < 0.3)، إمكانات زيتا قابلة للتعديل (حوالي -20 مللي فولت لـ FNP-QC وحوالي +25 مللي فولت لـ PEI-FNP-QC)، زيادة ذوبانية الكويرسيتين في الماء بمقدار 2-3 مرات، وتفاعلات كيميائية ملحوظة (روابط هيدروجينية وتفاعلات أيونية) بين QC والفيبروين/PEI. علاوة على ذلك، وبناءً على عملية التحضير وتركيب الجسيمات، أظهرت الجسيمات كفاءات احتواء معتدلة للكويرسيتين (35–75%)، وأسـطحًا ناعمة أو خشنة، وامتصاصًا سريعًا للدواء يتبع نماذج تشمل متساوي حرارة لانغموير ودوبينين-رادوشكيفيتش، بالإضافة إلى حركية من الدرجة الثانية الزائفة. المثير للاهتمام أن الجسيمات، في بيئة فموية محاكية، تمكنت من حماية QC في الظروف المعدية عند pH 1.2، مع إطلاق أقل من 20%، مع استمرار إطلاقه في الأمعاء عند pH 6.8، بمعدلات يمكن التحكم بها من خلال تعديل طرق التحضير و/أو وظيفة PEI. خلاصة القول، أظهرت كل من FNP وPEI-FNP إمكانات كبيرة كنظم توصيل دوائية خاضعة للتحكم للإعطاء الفموي للمركبات متعددة الفينول.
المراجع
Pietta P, Minoggio M, Bramati L. Plant Polyphenols: Structure, Occurrence and Bioactivity. In: Studies in Natural Products Chemistry. (Rahman A. ed). Bioactive Natural Products (Part I) Elsevier; 2003; pp. 257–312; doi: 10.1016/S1572-5995(03)80143-6. DOI: https://doi.org/10.1016/S1572-5995(03)80143-6
Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev. 2009;2(5):270–278. DOI: https://doi.org/10.4161/oxim.2.5.9498
Huynh DTM, Le M-NT, Tran VD, et al. Native Medicinal Plants (Moringa oleifera Lam, Brucea javanica (L.) Merr., Eclipta prostrata (L.), Callisia fragrans (Lindl.) Woodson, and Zingiber zerumbet (L.) Smith) in An Giang, Vietnam: A Preliminary Investigation for Rhabdomyosarcoma Treatments using in-vitro RD cell cytotoxicity test. Jordan Journal of Pharmaceutical Sciences. 2023;16(4):830–841; doi: 10.35516/jjps.v16i4.1365. DOI: https://doi.org/10.35516/jjps.v16i4.1365
Friedman M, Jürgens HS. Effect of pH on the Stability of Plant Phenolic Compounds. J Agric Food Chem. 2000;48(6):2101–2110; doi: 10.1021/jf990489j. DOI: https://doi.org/10.1021/jf990489j
Pham DT, Nguyen DXT, Lieu R, et al. Silk nanoparticles for the protection and delivery of guava leaf (Psidium guajava L.) extract for cosmetic industry, a new approach for an old herb. Drug Delivery. 2023;30(1):2168793; doi: 10.1080/10717544.2023.2168793. DOI: https://doi.org/10.1080/10717544.2023.2168793
Pham DT, Huynh QC, Lieu R, et al. Controlled-Release Wedelia trilobata L. Flower Extract Loaded Fibroin Microparticles as Potential Anti-Aging Preparations for Cosmetic Trade Commercialization. Clinical, Cosmetic and Investigational Dermatology. 2023;16:1109–1121; doi: 10.2147/CCID.S405464. DOI: https://doi.org/10.2147/CCID.S405464
Anand David AV, Arulmoli R, Parasuraman S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacogn Rev. 2016;10(20):84–89; doi: 10.4103/0973-7847.194044. DOI: https://doi.org/10.4103/0973-7847.194044
Alshieka M, Jandali R, Agha MIH. A Comparative Study of in Vitro Lipoxygenase Inhibition and DPPH (1, 1-Diphenyl-2-Picrylhydrazyl) Free Radical Scavenging Activity of Silybum marianum and [Notobasis syriaca (L.) Cass.] Fruits and Linum usitatisimum Seeds. Jordan Journal of Pharmaceutical Sciences. 2023;16(2):561–561; doi: 10.35516/jjps.v16i2.1500. DOI: https://doi.org/10.35516/jjps.v16i2.1500
Atul Bhattaram V, Graefe U, Kohlert C, et al. Pharmacokinetics and bioavailability of herbal medicinal products. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2002;9 Suppl 3(SUPPL. 3):1–33; doi: 10.1078/1433-187X-00210. DOI: https://doi.org/10.1078/1433-187X-00210
Fasolo D, Schwingel L, Holzschuh M, et al. Validation of an isocratic LC method for determination of quercetin and methylquercetin in topical nanoemulsions. Journal of Pharmaceutical and Biomedical Analysis. 2007;44(5):1174–1177; doi: 10.1016/J.JPBA.2007.04.026. DOI: https://doi.org/10.1016/j.jpba.2007.04.026
Kumari A, Yadav SK, Pakade YB, et al. Development of biodegradable nanoparticles for delivery of quercetin. Colloids and surfaces B, Biointerfaces. 2010;80(2):184–192; doi: 10.1016/J.COLSURFB.2010.06.002. DOI: https://doi.org/10.1016/j.colsurfb.2010.06.002
Bordenave N, Hamaker BR, Ferruzzi MG. Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods. Food & function. 2014;5(1):18–34; doi: 10.1039/C3FO60263J. DOI: https://doi.org/10.1039/C3FO60263J
Priprem A, Watanatorn J, Sutthiparinyanont S, et al. Anxiety and cognitive effects of quercetin liposomes in rats. Nanomedicine : nanotechnology, biology, and medicine. 2008;4(1):70–78; doi: 10.1016/J.NANO.2007.12.001. DOI: https://doi.org/10.1016/j.nano.2007.12.001
Mignet N, Seguin J, Chabot GG. Bioavailability of polyphenol liposomes: a challenge ahead. Pharmaceutics. 2013;5(3):457–471; doi: 10.3390/PHARMACEUTICS5030457. DOI: https://doi.org/10.3390/pharmaceutics5030457
Russo M, Spagnuolo C, Tedesco I, et al. The flavonoid quercetin in disease prevention and therapy: facts and fancies. Biochemical pharmacology. 2012;83(1):6–15; doi: 10.1016/J.BCP.2011.08.010. DOI: https://doi.org/10.1016/j.bcp.2011.08.010
Kim YH, Lee DW, Jung EJ, et al. Preparation and characterization of quercetin-loaded silica microspheres stabilized by combined multiple emulsion and sol-gel processes. Chemical Industry and Chemical Engineering Quarterly. 2015;21(1–1):85–94; doi: 10.2298/CICEQ131002010K. DOI: https://doi.org/10.2298/CICEQ131002010K
Ibraheem LM, Khattabi AM. Studying the Effect of Functional Group and Size of Silica Nanoparticles Loaded with Quercetin on their in vitro Characteristics. Jordan Journal of Pharmaceutical Sciences. 2022;15(4):569–582; doi: 10.35516/jjps.v15i4.679. DOI: https://doi.org/10.35516/jjps.v15i4.679
Desai KGH, Park HJ. Recent Developments in Microencapsulation of Food Ingredients. Drying Technology. 2005;23(7):1361–1394; doi: 10.1081/DRT-200063478. DOI: https://doi.org/10.1081/DRT-200063478
Wang J, Zhao XiH. Degradation kinetics of fisetin and quercetin in solutions affected by medium pH, temperature and co-existed proteins. Journal of the Serbian Chemical Society. 2016;81(3):243–253; doi: 10.2298/JSC150706092W. DOI: https://doi.org/10.2298/JSC150706092W
Pham DT, Thao NTP, Thuy BTP, et al. Silk fibroin hydrogel containing Sesbania sesban L. extract for rheumatoid arthritis treatment. Drug delivery. 2022;29(1):882–888; doi: 10.1080/10717544.2022.2050848. DOI: https://doi.org/10.1080/10717544.2022.2050848
Pham DT, Tiyaboonchai W. Fibroin nanoparticles: a promising drug delivery system. Drug delivery. 2020;27(1):431–448; doi: 10.1080/10717544.2020.1736208. DOI: https://doi.org/10.1080/10717544.2020.1736208
Valluzzi R, Gido S. Orientation of Silk III at the Air - Water Interface. n.d.
Wongpinyochit T, Johnston BF, Seib P. Degrradation Behavior of Silk Nanoparticles - Enzyme Responiveness. n.d.
Farokhi M, Mottaghitalab F. Sustained Release of Platelet-Deried Growth Factor and Vascular Endothelial Growth Factor from Silk/Calcium Phosphate/PLGA Based Nanocomposite Scafold. Internation Journal of Pharmaceutics. 2013;454:216-225. DOI: https://doi.org/10.1016/j.ijpharm.2013.06.080
Numata K, Cebe P, Kaplan DL. Mechanism of Enzymatic Degradation of Beta-Sheet Crystals. Biomaterials. 2010;31(10):2926–2933; doi: 10.1016/j.biomaterials.2009.12.026. DOI: https://doi.org/10.1016/j.biomaterials.2009.12.026
Sakabe H, Ito H, Miyamonto T. In Vivo Compatibility of Regenerated Fibroin. 1989;45(11):487–490. DOI: https://doi.org/10.2115/fiber.45.11_487
Santin M, Motta A, Freddi G, et al. In Vitro Evaluation of the Inflammatory Potential of the Silk Fibroin. Journal of Biomedical Materials Research. 1999;46(3):382–389; doi: 10.1002/(SICI)1097-4636(19990905)46:3<382::AID-JBM11>3.0.CO;2-R. DOI: https://doi.org/10.1002/(SICI)1097-4636(19990905)46:3<382::AID-JBM11>3.0.CO;2-R
Konishi T, Kurokawa M. The Structure of Silk Fibroin-α. Sen’i Gakkaishi. 1968;24(12):550–554; doi: 10.2115/fiber.24.550. DOI: https://doi.org/10.2115/fiber.24.550
Crivelli B, Bari E, Perteghella S, et al. Silk fibroin nanoparticles for celecoxib and curcumin delivery: ROS-scavenging and anti-inflammatory activities in an in vitro model of osteoarthritis. European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2019;137:37–45; doi: 10.1016/j.ejpb.2019.02.008. DOI: https://doi.org/10.1016/j.ejpb.2019.02.008
Pham DT, Nguyen TL, Nguyen TTL, et al. Polyethylenimine-functionalized fibroin nanoparticles as a potential oral delivery system for BCS class-IV drugs, a case study of furosemide. Journal of Materials Science. 2023;58(23):9660–9674; doi: 10.1007/S10853-023-08640-Y/METRICS. DOI: https://doi.org/10.1007/s10853-023-08640-y
Pham DT, Saelim N, Tiyaboonchai W. Alpha mangostin loaded crosslinked silk fibroin-based nanoparticles for cancer chemotherapy. Colloids and surfaces B, Biointerfaces. 2019;181:705–713; doi: 10.1016/J.COLSURFB.2019.06.011. DOI: https://doi.org/10.1016/j.colsurfb.2019.06.011
Ki CS, Park YH, Jin HJ. Silk protein as a fascinating biomedical polymer: Structural fundamentals and applications. Macromolecular Research. 2009 17:12 2009;17(12):935–942; doi: 10.1007/BF03218639. DOI: https://doi.org/10.1007/BF03218639
Keten S, Xu Z, Ihle B, et al. Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nature materials. 2010;9(4):359–367; doi: 10.1038/NMAT2704. DOI: https://doi.org/10.1038/nmat2704
Brooks AE. The Potential of Silk and Silk-Like Proteins as Natural Mucoadhesive Biopolymers for Controlled Drug Delivery. Frontiers in chemistry. 2015;3(NOV); doi: 10.3389/FCHEM.2015.00065. DOI: https://doi.org/10.3389/fchem.2015.00065
Koperska MA, Pawcenis D, Milczarek JM, et al. Fibroin degradation – Critical evaluation of conventional analytical methods. Polymer Degradation and Stability. 2015;120:357–367; doi: 10.1016/J.POLYMDEGRADSTAB.2015.07.006. DOI: https://doi.org/10.1016/j.polymdegradstab.2015.07.006
Goula D, Benoist C, Mantero S, et al. Polyethylenimine-based intravenous delivery of transgenes to mouse lung. Gene therapy. 1998;5(9):1291–1295; doi: 10.1038/SJ.GT.3300717. DOI: https://doi.org/10.1038/sj.gt.3300717
Pham DT, Saelim N, Cornu R, et al. Crosslinked Fibroin Nanoparticles: Investigations on Biostability, Cytotoxicity, and Cellular Internalization. Pharmaceuticals. 2020;13(5); doi: 10.3390/PH13050086. DOI: https://doi.org/10.3390/ph13050086
Pham DT, Saelim N, Tiyaboonchai W. Crosslinked fibroin nanoparticles using EDC or PEI for drug delivery: physicochemical properties, crystallinity and structure. Journal of Materials Science. 2018 53:20 2018;53(20):14087–14103; doi: 10.1007/S10853-018-2635-3. DOI: https://doi.org/10.1007/s10853-018-2635-3
Pham DT, Tetyczka C, Hartl S, et al. Comprehensive investigations of fibroin and poly(ethylenimine) functionalized fibroin nanoparticles for ulcerative colitis treatment. Journal of Drug Delivery Science and Technology. 2020;57:101484; doi: 10.1016/J.JDDST.2019.101484. DOI: https://doi.org/10.1016/j.jddst.2019.101484
PubChem. Quercetin. n.d. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/5280343 [Last accessed: 7/18/2024].
Pham DT, Nguyen DXT, Nguyen NY, et al. Development of pH-responsive Eudragit S100-functionalized silk fibroin nanoparticles as a prospective drug delivery system. PLOS ONE. 2024;19(5):e0303177; doi: 10.1371/journal.pone.0303177. DOI: https://doi.org/10.1371/journal.pone.0303177
Wang W, Sun C, Mao L, et al. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends in Food Science & Technology. 2016;56:21–38; doi: 10.1016/J.TIFS.2016.07.004. DOI: https://doi.org/10.1016/j.tifs.2016.07.004
Bayraktar O, Malay Ö, Özgarip Y, et al. Silk fibroin as a novel coating material for controlled release of theophylline. European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2005;60(3):373–381; doi: 10.1016/J.EJPB.2005.02.002. DOI: https://doi.org/10.1016/j.ejpb.2005.02.002
Zhan S, Paik A, Onyeabor F, et al. Oral Bioavailability Evaluation of Celastrol-Encapsulated Silk Fibroin Nanoparticles Using an Optimized LC-MS/MS Method. Molecules (Basel, Switzerland). 2020;25(15); doi: 10.3390/MOLECULES25153422. DOI: https://doi.org/10.3390/molecules25153422
Khosropanah MH, Vaghasloo MA, Shakibaei M, et al. Biomedical applications of silkworm (Bombyx Mori) proteins in regenerative medicine (a narrative review). Journal of tissue engineering and regenerative medicine. 2022;16(2):91–109; doi: 10.1002/TERM.3267. DOI: https://doi.org/10.1002/term.3267
Dong JW, Cai L, Xing Y, et al. Re-evaluation of ABTS*+ Assay for Total Antioxidant Capacity of Natural Products. Natural product communications. 2015;10(12):2169–2172; doi: 10.1177/1934578x1501001239. DOI: https://doi.org/10.1177/1934578X1501001239
Chen L, Jiang Z, Liu K, et al. Application of Langmuir and Dubinin–Radushkevich models to estimate methane sorption capacity on two shale samples from the Upper Triassic Chang 7 Member in the southeastern Ordos Basin, China. Energy Exploration & Exploitation. 2017;35(1):122–144; doi: 10.1177/0144598716684309. DOI: https://doi.org/10.1177/0144598716684309
Nguyen NNT, Pham DT, Nguyen DT, et al. Bilayer tablets with sustained-release metformin and immediate-release sitagliptin: preparation and in vitro/in vivo evaluation. Journal of Pharmaceutical Investigation. 2021;51(5):579–586; doi: 10.1007/S40005-021-00533-Z/METRICS DOI: https://doi.org/10.1007/s40005-021-00533-z







