التأثير العلاجي للبروبوليس ضد التعبير الجيني للأغشية الحيوية في المبيضات البيضاء
DOI:
https://doi.org/10.35516/jjps.v18i1.3130الكلمات المفتاحية:
التعبير، Ece1، Sap5، Als3، الجيناتالملخص
المادة اللزجة المسماة البروبوليس مصنوعة من النباتات وتنتجها نحل العسل. وقد استخدمت كعلاج شعبي منذ العصور القديمة، ولها فوائد صيدلانية عديدة، مثل كونها مضادة للبكتيريا والفطريات. كان الهدف من هذا العمل هو تحديد تأثير البروبوليس على التعبير عن ثلاثة جينات Ece1) و Sap5 و (Als3 معروفة بتورطها في تطوير الأغشية الحيوية للمبيضات البيضاء وتحديد الحد الأدنى من تركيز البروبوليس المثبط المطلوب لهذا الغرض. تم استخدام اختبار XTT لتقييم النشاط المضاد للأغشية الحيوية للبروبوليس من أجل التأكد من تكوين الأغشية الحيوية على 100 عزلة من C. albicans من عينات البراز وحساب الحد الأدنى لتركيز البروبوليس المثبط الذي يثبط الأغشية الحيوية لـ C. albicans خلال 24 و 48 ساعة. أخيرًا، تم فحص تأثير البروبوليس على التعبير عن جينات Ece1 و Sap5 و Als3 في C. albicans باستخدام تفاعل البوليميراز المتسلسل في الوقت الحقيقي ومقارنته بالنتائج التي ظهرت في التعبير الجيني للأغشية الحيوية C. albicans البروبوليس غير المعالج خلال 24 و 48 ساعة، وتم اعتباره عنصر تحكم. من خلال المقارنة، وجد أن تكوين الأغشية الحيوية ينخفض مع زيادة تركيز البروبوليس والوقت. وعليه، كان الحد الأدنى لتركيز البروبوليس المثبط 40٪ وزن / حجم، وكان الحد الأدنى لتركيزه المبيد للفطريات (MFC) 50٪ وزن / حجم في C. albicans المكونة للأغشية الحيوية. بالإضافة إلى ذلك، كشف تحليل مستوى التعبير الجيني عن انخفاض في مستويات التعبير عن Ece1 وSap5 وAls3 مع معالجة البروبوليس خلال 24 و48 ساعة.
المراجع
Ayuningtyas NF., Mahdani FY., Pasaribu TAS., Chalim M., Ayna VK., Santosh AB., Santacroce L. and Surboyo MD. Role of Candida albicans in Oral Carcinogenesis. Pathophysiology. 2022;29:650–62. DOI: https://doi.org/10.3390/pathophysiology29040051
Umami A., Paulik E., Molnar R. and Murti B. The relationship between genital hygiene behaviors and genital infections among women: A systematic review. Jurnal Ners. 2022; 17:89–101. DOI: https://doi.org/10.20473/jn.v17i1.34402
Wall G., Montelongo-Jauregui D., Vidal Bonifacio B., Lopez-Ribot JL. and Uppuluri P. Candida albicans biofilm growth and dispersal: contributions to pathogenesis. Curr Opin Microbiol. 2019; 52-16. DOI: https://doi.org/10.1016/j.mib.2019.04.001
Ridwan RD., Diyatri I., Juliastuti WS., Waskita FA., Ananda GC. and Juliana NV. The Ability of Hylocereus Polyrhizus for Gram Positive Bacteria and Candida Albicans. Biochem Cell Arch. 2020; 20:4839–44.
Masfufatun M., Raharjo LH., Wiradinata H.,Tania PO., Ni'matuzahroh NM. and Baktir A .2021. New phenomena for clinicians, model of Candida albicans mobilization before and after biofilm formation in the intestinal mucosa of Wistar rats (Rattus norvegicus). Int J One Health. 2021; 7:165–70. DOI: https://doi.org/10.14202/IJOH.2021.165-170
Anggraini W., Purwanto DA., Kusumawati I., Isnaeni. and Suryanto. Influence of the Environment on Biofilm Formation Candida albicans of Vulvovaginal Candidiasis Isolate Patient. Pharmacognosy J. 2023; 15:216–22. DOI: https://doi.org/10.5530/pj.2023.15.32
Masfufatun M., Purbowati R., Arum NA., Yasinta MS., Sumarsih S. and Baktir A. An intestinal Candida albicans model for monomicrobial and polymicrobial biofilms and effects of hydrolases and the Bgl2 ligand.Vet World. 2022; 15:1134–40. DOI: https://doi.org/10.14202/vetworld.2022.1134-1140
Asih DW., Widodo ADW., Setiabudi RJ., Tyasningsih W. and Wahyunitisari MR. Biofilm formation by the interaction of fungi (Candida tropicalis) with various bacteria. J Adv Biotechnol Exper Therapeut. 2023; 6:84–93. DOI: https://doi.org/10.5455/jabet.2023.d108
Capoci IR., Bonfim-Mendonça PD., Arita GS, Pereira RR., Consolaro ME., Bruschi ML., Negri M. and Svidzinski TI. Propolis is an efficient fungicide and inhibitor of biofilm production by vaginal Candida albicans. Evidence‐Based Complementary and Alternative Medicine. 2015; 1:287-693. DOI: https://doi.org/10.1155/2015/287693
Abd Rashid N., Mohammed SNF., Syed Abd Halim SA., Ghafar NA. and Abdul Jalil NA. Therapeutic Potential of Honey and Propolis on Ocular Disease. Pharmaceuticals. 2022; 15:1419. DOI: https://doi.org/10.3390/ph15111419
Okińczyc P., Paluch E., Franiczek R., Widelski J., Wojtanowski KK., Mroczek T. and Sroka Z. Antimicrobial activity of Apis mellifera L. and Trigona sp. propolis from Nepal and its phytochemical analysis. Biomedicine & Pharmacotherapy. 2020; 129:110-435. DOI: https://doi.org/10.1016/j.biopha.2020.110435
Hadi Wiyono., Handoko E., Noorhamdani. and Prawiro SR. Effect of Ethanolic Extract Propolis Trigona spp. Malang Indonesia on Isolate Staphylococcus aureus Biofilm Architecture from Chronic Rhinosinusitis A Confocal Laser Scanning Microscopic Study. Int J Pharm Sci & Res. 2019; 10:2711-17.
Garcia M C., Lee J T., Ramsook C B., Alsteens D., Dufrêne Y F. and Lipke P N. A role for amyloid in cell aggregation and biofilm formation. PLoS One. 2011; 6:17-32. DOI: https://doi.org/10.1371/journal.pone.0017632
Sardi J C., Scorzoni L., Bernardi T., Fusco-Almeida A M. and Mendes G M J. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. Journal of Medical Microbiology. 2013; 62:10-24. DOI: https://doi.org/10.1099/jmm.0.045054-0
Carvalho-Pereira J., Vaz C., Carneiro C., Pais C. and Sampaio P. Genetic Variability of Candida albicans Sap8 Propeptide in Isolates from Different Types of Infection. Hindawi Publishing Corporation BioMed Research Internationa0l. 2015; 8:148-343. DOI: https://doi.org/10.1155/2015/148343
Li F and Palecek S P. Distinct domains of the Candida albicans adhesin Eap1p mediate cellcell and cell-substrate interactions. Microbiology. 2008; 154:1193–203. DOI: https://doi.org/10.1099/mic.0.2007/013789-0
Mohammed NA., Ajah HA. and Abdulbaqi NT. Determination the Gene Expression Levels of adhesins and Extracellular Enzymes Genes in Candida albicans biofilm producer by Quantitative Real Time PCR Technique (qRT-PCR). Indian Journal of Forensic Medicine & Toxicology. 2021; 2:1517-1527. DOI: https://doi.org/10.37506/ijfmt.v15i2.14553
Garbe E., Thielemann N., Hohner S., Kumar A., Vylkova S., Kurzai O. and Martinb R. Functional analysis of the Candida albicans ECE1 Promoter. Microbiology spectrum. 2023; 1-11. DOI: https://doi.org/10.1128/spectrum.00253-23
ABBAS., Hayder M., HASAN., Marwa A., ALI. and Sinor D. Effect of Bee Venom on MRSA Isolated from Patient's Wounds at Tikrit Teaching Hospital. Indian Journal of Public Health Research & Development. 2019; 10:1-10. DOI: https://doi.org/10.5958/0976-5506.2019.02945.0
Agarwal V., Lal P. and Pruthi V. Effect of plant oils on Candida albicans. J Microbiol Immunol Infect. 2010; 43:447-451. DOI: https://doi.org/10.1016/S1684-1182(10)60069-2
Lal P., Sharma D., Pruthi P. and Pruthi V. Exopolysaccharide analysis of biofilm-forming Candida albicans. J Applied Microbiol. 2010; 109:128-136. DOI: https://doi.org/10.1111/j.1365-2672.2009.04634.x
Roehm N., Rogers G., Hatfield S. and Glasebrook AL. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Methods. 1991; 142:257-265. DOI: https://doi.org/10.1016/0022-1759(91)90114-U
Uppuluri P., Dinakaran H., Thomas DP., Chaturvedi AK. and Lopez-Ri-bot JL. Characteristics of Candida albicans biofilms grown in a synthetic urine medium. J Clin Microbiol. 2009; 47:4078-83. DOI: https://doi.org/10.1128/JCM.01377-09
Nailis H., Kucharíková S., Ricicová M., Van Dijck P., Deforce D., Nelis H. and Coenye T. Real-time PCR expression profiling of genes encod-ing potential virulence factors in Candida albicans biofilms: iden-tification of model-dependent and -independent gene expression. BMC Microbiol. 2010; 10:1-11. DOI: https://doi.org/10.1186/1471-2180-10-114
Chen L., Mehta A., Berenbaum M., Zangerl AR. and Engeseth NJ. Honeys from different floral sources as inhibitors of enzymatic browning in fruit and vegetable homogenates. J Agric Food Chem. 2000; 48:4997-5000. DOI: https://doi.org/10.1021/jf000373j
Mundo M. and Padilla-Zakour O. Growth inhibition of foodborne patho- gens and food spoilage organisms by select raw honeys. Int J Food Microbiol. 2004; 9:1-8. DOI: https://doi.org/10.1016/j.ijfoodmicro.2004.03.025
Al-Waili NS., Salom K., Butler G. and Al Ghamdi AA. Honey and microbial infections: a review supporting the use of honey for microbial control. J Med Food. 2011; 10:1079-1096. DOI: https://doi.org/10.1089/jmf.2010.0161
Biswal B., Zakaria A. and Ahmad N. Topical application of honey in the management of radiation mucositis: a preliminary study. Support Care Cancer. 2003; 11:242-248. DOI: https://doi.org/10.1007/s00520-003-0443-y
English H., Pack A. and Molan P. The effects of manuka honey on plaque and gingivitis: a pilot study. J Int Acad Periodontol. 2004; 6:63-67.
Motallebnejad M., Akram S., Moghadamnia A., Moulana Z and Omidi S. The effect of topical application of pure honey on radiation-induced mucositis: a randomized clinical trial. J Contemp Dent Pract. 2008; 9:40-47. DOI: https://doi.org/10.5005/jcdp-9-3-40
Bouchelaghem S. Propolis characterization and antimicrobial activities against Staphylococcus aureus and Candida albicans: A review. Saudi journal of biological sciences. 2022; 1:1936-46. DOI: https://doi.org/10.1016/j.sjbs.2021.11.063
Béji-Srairi R., Younes I., Snoussi M., Yahyaoui K., Borchard G., Ksouri R., Frachet V. and Wided MK. Ethanolic extract of Tunisian propolis: chemical composition, antioxidant, antimicrobial and antiproliferative properties. Journal of Apicultural Research. 2020; 59:917–927. DOI: https://doi.org/10.1080/00218839.2020.1732572
Mutlu Sariguzel F., Berk E., Koc A.N., Sav H. and Demir G. Antifungal activity of propolis against yeasts isolated from blood culture: In vitro evaluation. Journal of Clinical Laboratory Analysis. 2016; 30:513–516. DOI: https://doi.org/10.1002/jcla.21889
Cooper R, Lindsay E. and Molan P. Testing the susceptibility to manuka honey of streptococci isolated from wound swabs. J Apiprod Apimed Sci. 2011; 3:117-122. DOI: https://doi.org/10.3896/IBRA.4.03.3.02
Maddocks S., Lopez M., Rowlands R. and Cooper RA. Manuka honey inhibits the development of Streptococcus pyogenes biofilms and causes reduced expression of two fibronectin binding proteins. Microbiology. 2012; 158:781-790. DOI: https://doi.org/10.1099/mic.0.053959-0
Bueno-Silva B., Marsola A., Ikegaki M., Alencar SM. and Rosalen PL. The effect of seasons on Brazilian red propolis and its botanical source: chemical composition and antibacterial activity. Natural Product Research. 2017; 31:1318–1324. DOI: https://doi.org/10.1080/14786419.2016.1239088
Toreti VC., Sato HH., Pastore GM. and Park YK. Recent progress of propolis for Its biological and chemical compositions and its botanical origin. EvidenceBased Complementary and Alternative Medicine. 2013; 1–13. DOI: https://doi.org/10.1155/2013/697390
Dezmirean DS., Pasca C., Moise A.R. and Bobis O. Plant Sources Responsible for the Chemical Composition and Main Bioactive Properties of Poplar-Type Propolis. Plants. 2021; 10-22. DOI: https://doi.org/10.3390/plants10010022
Regueira MS., Tintino SR., da Silva ARP., Costa MdS., Boligon AA., Matias EFF., de Queiroz Balbino V., Menezes IRA. and Melo Coutinho HD. Seasonal variation of Brazilian red propolis: Antibacterial activity, synergistic effect and phytochemical screening. Food and Chemical Toxicology. 2017; 107:572–580. DOI: https://doi.org/10.1016/j.fct.2017.03.052
Anjum SI., Ullah A., Khan KA., Attaullah M., Khan H., Ali H., Bashir MA., Tahir M., Ansari MJ., Ghramh HA., Adgaba N. and Dash CK. Composition and functional properties of propolis (bee glue): A review. Saudi Journal of Biological. 2019; 26:1695–1703. DOI: https://doi.org/10.1016/j.sjbs.2018.08.013
El-Guendouz S., Aazza S., Lyoussi B., Bankova V., Popova M., Neto L., Faleiro ML. and Miguel M da G. Moroccan Propolis: A natural antioxidant, antibacterial, and antibiofilm against Staphylococcus aureus with no induction of resistance after continuous exposure. Evidence-Based Complementary and Alternative Medicine. 2018; 1–19. DOI: https://doi.org/10.1155/2018/9759240
Ezzat SM., Khattaby AM., Abdelmageed S. and Abd Elaal MA. Cytotoxicity, antioxidant, anti-inflammatory activity, and GC-MS analysis of Egyptian propolis. Comp Clin Pathol. 2019; 28:1589–1598. DOI: https://doi.org/10.1007/s00580-019-02971-6
Piccinelli AL., Mencherini T., Celano R., Mouhoubi Z., Tamendjari A., Aquino R.P. and Rastrelli L. Chemical composition and antioxidant activity of Algerian propolis. J. Agric. Food Chem. 2013; 61:5080–5088. DOI: https://doi.org/10.1021/jf400779w
Staab JF., Bradway SD., Fidel PL. and Sundstrom P. Adhesive and mammalian transglutaminase substrate properties of Candida albi-cans Hwp1. Science.1999; 283:1535-8. DOI: https://doi.org/10.1126/science.283.5407.1535
Hoyer LL. The ALS gene family of Candida albicans. Trends Mi-crobiol. 2001; 9:176-80. DOI: https://doi.org/10.1016/S0966-842X(01)01984-9
Birse CE., Irwin MY., Fonzi WA. and Sypherd PS. Cloning and charac-terization of ECE1, a gene expressed in association with cell elon-gation of the dimorphic pathogen Candida albicans. Infect Immun. 1993; 61:3648-55. DOI: https://doi.org/10.1128/iai.61.9.3648-3655.1993
Naglik JR., Challacombe SJ. and Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev. 2003; 67:400-28. DOI: https://doi.org/10.1128/MMBR.67.3.400-428.2003
Majhol RH., Al-Rashedi NAM. and Al-Oebady MAH. Bacterial activity on hyphal formation of Candida albicans. J PHARM NEGATIVE RESULTS. 2022; 13:552-555. DOI: https://doi.org/10.47750/pnr.2022.13.03.083
Aslani P., Roudbar S. and Roudbary M. Novel formulated zinc oxide nanoparticles reduce Hwp1 Gene expression involved in biofilm formation in Candida albicans with minimum cytotoxicity effect on human cells. Jundishapur J Microbiol. 2018; 11:79-562. DOI: https://doi.org/10.5812/jjm.79562
AlHoly., Taif., and Walid Khaddam. Extracellular Synthesis of Magnesium Oxide at Nano and Bulk Scale: Antifungal Effect Against Candida albicans, Aspergillus niger. Jordan Journal of Pharmaceutical Sciences. 2023; 16.4.
Khajeh E., Hosseini SJ., Rajabibazl M., Roudbary M., Rafiei S., Aslani P. and Farahnejad Z. Antifungal effect of Echinophora platyloba on expression of CDR1 and CDR2 genes in fluconazole-resistant Candida albicans. Br J Biomed Sci. 2016; 73:44–8. DOI: https://doi.org/10.1080/09674845.2016.1155269
Baghini GS., Sepahi AA., Tabatabaei RR. and Tahvildari K. The combined effects of ethanolic extract of Artemisia aucheri and Artemisia oliveriana on biofilm genes expression of methicillin resistant Staphylococcus aureus. Iran J Microbiol. 2018; 10:417–23.
Teggar., Naoual., et al. Chemical composition and biological evaluation of Algerian propolis from six different regions. Jordan Journal of Pharmaceutical Sciences. 2023: 184-197. DOI: https://doi.org/10.35516/jjps.v16i2.1319
Tyagi SP., Sinha DJ., Garg P., Singh UP., Mishra CC. and Nagpal R. Comparison of antimicrobial efficacy of propolis, Morinda citrifolia, Azadirachta indica (Neem) and 5% sodium hypochlorite on Candida albicans biofilm formed on tooth substrate: An in-vitro study. Journal of conservative dentistry. 2013; 16:6- 532. DOI: https://doi.org/10.4103/0972-0707.120973
Majiene D., Macioniene I., Kursvietiene L., Bernatoniene J., Davalgiene J., Lazauskas R. and Savickas A. The effect of propolis on microbial vitality and oxygen consumption. Journal of Medicinal Plants Research. 2010; 4:954-958.
Mohammed., Ghada Abdulmunim. Studying the Anti Candidal-Activity of Different Herbal Oils Incorporated into Tissue Conditioner:(A Comparative study). Jordan Journal of Pharmaceutical Sciences .2023; 16: 871-879. DOI: https://doi.org/10.35516/jjps.v16i4.2086
MAH Al-Oebady., AAA Dakl., HM Nahab. Influence of Staphylococcus Aureus on the Oral Candida Albicans. Journal of Global Pharma Technology. 2019; 11: 288-293.







