A Review on the Application of Electrospun Herbal Extract-Loaded Metallized Nanofiber Composites as Wound Healing Promoter: Fabrication, Efficacy, and Safety
DOI:
https://doi.org/10.35516/jjps.v18i2.2506Keywords:
Nanofibers, electrospinning, Multimodal nanostructure, Wound healingAbstract
Electrospinning is a promising technique for wound healing applications, as it enables the fabrication of nanostructures that closely mimic the natural extracellular matrix. This review highlights the potential of electrospun nanofiber composites loaded with herbal extracts and metal nanoparticles as effective wound healing agents. Herbal extracts, known for their antioxidant, anti-inflammatory, and antibacterial properties, contribute significantly to therapeutic outcomes. The incorporation of metal nanoparticles further enhances antimicrobial activity and accelerates the healing process. This review provides a comprehensive overview of the fabrication methods, efficacy, and safety of electrospun herbal extract-loaded metallized nanofiber composites in wound healing applications.
References
Rieger K.A., Birch N.P. and Schiffman J.D. Designing electrospun nanofiber mats to promote wound healing—a review. J. Mater. Chem. B. 2013; 1:4531–4541. DOI: https://doi.org/10.1039/c3tb20795a
Center for Health Statistics N. National Hospital Ambulatory Medical Care Survey: 2021 Emergency Department Summary Tables. Centers for Disease Control and Prevention. 2021. Available from: https://ftp.cdc.gov/pub/Health_
WHO. Burns. WHO Newsroom n.d. Available from: https://www.who.int/news-room/fact-sheets/detail/burns
WHO. Director-General’s live speech at Maria Holder Diabetes Center for the Caribbean—"Early Detection for Better Outcomes with Diabetes". WHO Speeches n.d. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-live-speech-at-maria-holder-diabetes-center-for-the-caribbean---early-detection-for-
Liu X., Xu H., Zhang M. and Yu D.G. Electrospun medicated nanofibers for wound healing: Review. Membranes (Basel). 2021; 11(9):770. DOI: https://doi.org/10.3390/membranes11100770
Yaşayan G., Alarçin E., Bal-Öztürk A. and Avci-Adali M. Natural polymers for wound dressing applications. Stud. Nat. Prod. Chem. 2022; 75:367–441. DOI: https://doi.org/10.1016/B978-0-323-91099-6.00004-9
Wang J., Lin J., Chen L., Deng L. and Cui W. Endogenous electric-field-coupled electrospun short fiber via collecting wound exudation. Adv. Mater. 2022; 34:2108325. Available from: DOI: https://doi.org/10.1002/adma.202108325
https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202108325
Hu Q., Wan X., Wang S., Huang T., Zhao X., Tang C., et al. Ultrathin, flexible, and piezoelectric Janus nanofibrous dressing for wound healing. Sci. China Mater. 2023; 66:3347–3360. DOI: https://doi.org/10.1007/s40843-022-2444-0
Lee C.H., Chang S.H., Chen W.J., Hung K.C., Lin Y.H., Liu S.J., et al. Augmentation of diabetic wound healing and enhancement of collagen content using nanofibrous glucophage-loaded collagen/PLGA scaffold membranes. J. Colloid Interface Sci. 2015; 439:88–97. DOI: https://doi.org/10.1016/j.jcis.2014.10.028
Anand S., Rajinikanth P.S., Arya D.K., Pandey P., Gupta R.K., Sankhwar R., et al. Multifunctional biomimetic nanofibrous scaffold loaded with Asiaticoside for rapid diabetic wound healing. Pharmaceutics. 2022; 14. Available from: https://pubmed.ncbi.nlm.nih.gov/35214006/ DOI: https://doi.org/10.3390/pharmaceutics14020273
Poornima B. and Korrapati P.S. Fabrication of chitosan-polycaprolactone composite nanofibrous scaffold for simultaneous delivery of ferulic acid and resveratrol. Carbohydr. Polym. 2017; 157:1741–1749. DOI: https://doi.org/10.1016/j.carbpol.2016.11.056
Croitoru A.M., Ficai D., Ficai A., Mihailescu N., Andronescu E. and Turculet C.F. Nanostructured fibers containing natural or synthetic bioactive compounds in wound dressing applications. Materials. 2020; 13(24):5765. DOI: https://doi.org/10.3390/ma13102407
Aljamal S., Sotari S., Tarawneh O., Al-Hashimi N., Hamed S., Al-Hussein M., et al. Preparation and characterization of drug-loaded, electrospun nanofiber mats formulated with zein or zein-based mixtures for wound healing applications. Jordan J. Pharm. Sci. 2023; 16:475. DOI: https://doi.org/10.35516/jjps.v16i2.1532
Mbese Z., Alven S. and Aderibigbe B.A. Collagen-based nanofibers for skin regeneration and wound dressing applications. Polymers (Basel). 2021; 13(11):1884. DOI: https://doi.org/10.3390/polym13244368
Basic principles of wound healing. UpToDate.
Basic principles of wound management. UpToDate.
Patel Z., Gharat S., Al-Tabakha M.M., Ashames A., Boddu S.H.S. and Momin M. Recent advancements in electrospun nanofibers for wound healing: Polymers, clinical and regulatory perspective. Crit. Rev. Ther. Drug Carrier Syst. 2022. Available from: DOI: https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2022039840
www.begellhouse.com
Behere I. and Ingavle G. In vitro and in vivo advancement of multifunctional electrospun nanofiber scaffolds in wound healing applications: Innovative nanofiber designs, stem cell approaches, and future perspectives. J. Biomed. Mater. Res. A 2022; 110:443–461. DOI: https://doi.org/10.1002/jbm.a.37290
Haider A., Haider S. and Kang I.K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 2018; 11:1165–1188. DOI: https://doi.org/10.1016/j.arabjc.2015.11.015
Islam M.S., Ang B.C., Andriyana A. and Afifi A.M. A review on fabrication of nanofibers via electrospinning and their applications. SN Appl. Sci. 2019; 1:1248. DOI: https://doi.org/10.1007/s42452-019-1288-4
Hiwrale A., Bharati S., Pingale P. and Rajput A. Nanofibers: A current era in drug delivery system. Heliyon. 2023; 9:e15350. DOI: https://doi.org/10.1016/j.heliyon.2023.e18917
Chen X., Xu C. and He H. Electrospinning of silica nanoparticles-entrapped nanofibers for sustained gentamicin release. Biochem. Biophys. Res. Commun. 2019; 516:1085–1089. DOI: https://doi.org/10.1016/j.bbrc.2019.06.163
Beikzadeh S., Akbarinejad A., Swift S., Perera J., Kilmartin P.A. and Travas-Sejdic J. Cellulose acetate electrospun nanofibers encapsulating Lemon Myrtle essential oil as active agent with potent and sustainable antimicrobial activity. React. Funct. Polym. 2020; 157:104770. DOI: https://doi.org/10.1016/j.reactfunctpolym.2020.104769
Sharma A., Khanna S., Kaur G. and Singh I. Medicinal plants and their components for wound healing applications. Futur. J. Pharm. Sci. 2021; 7:88. DOI: https://doi.org/10.1186/s43094-021-00202-w
Sardi V.F., Astika, Jalius I.M. and Ismed F. Quantification of mangiferin from the bioactive fraction of mango leaves (Mangifera indica L.) and evaluation of wound-healing potential. Jordan J. Pharm. Sci. 2023; 16:595–606. DOI: https://doi.org/10.35516/jjps.v16i3.652
Liu H., Bai Y., Huang C., Wang Y., Ji Y., Du Y. et al. Recent progress of electrospun herbal medicine nanofibers. Biomolecules. 2023; 13:1225. DOI: https://doi.org/10.3390/biom13010184
Lu Z., Yu D., Nie F., Wang Y. and Chong Y. Iron nanoparticles open up new directions for promoting healing in chronic wounds in the context of bacterial infection. Pharmaceutics. 2023; 15:2327. DOI: https://doi.org/10.3390/pharmaceutics15092327
Ibraheem L.M. and Khattabi A.M. Studying the effect of functional group and size of silica nanoparticles loaded with quercetin on their in vitro characteristics. Jordan J. Pharm. Sci. 2022; 15:569–582. DOI: https://doi.org/10.35516/jjps.v15i4.679
Grant S.A., Spradling C.S., Grant D.N., Fox D.B., Jimenez L., Grant D.A. et al. Assessment of the biocompatibility and stability of a gold nanoparticle collagen bioscaffold. J. Biomed. Mater. Res. A 2014; 102:332–339. DOI: https://doi.org/10.1002/jbm.a.34698
Wang L., Wu Y., Xie J., Wu S. and Wu Z. Characterization, antioxidant and antimicrobial activities of green synthesized silver nanoparticles from Psidium guajava L. leaf aqueous extracts. Mater. Sci. Eng. C. 2018; 86:1–8. DOI: https://doi.org/10.1016/j.msec.2018.01.003
Mendes C., Thirupathi A., Corrêa M.E.A.B., Gu Y. and Silveira P.C.L. The use of metallic nanoparticles in wound healing: New perspectives. Int. J. Mol. Sci. 2022; 23:7559. DOI: https://doi.org/10.3390/ijms232315376
Ahmed H., Gomte S.S., Prathyusha E., A P. and Agrawal M. Biomedical applications of mesoporous silica nanoparticles as a drug delivery carrier. J. Drug Deliv. Sci. Technol. 2022; 69:103093. DOI: https://doi.org/10.1016/j.jddst.2022.103729
Gryshchuk V. and Galagan N. Silica nanoparticles effects on blood coagulation proteins and platelets. Biochem. Res. Int. 2016; 2016:1–8. DOI: https://doi.org/10.1155/2016/2959414
Wu H., Li F., Wang S., Lu J., Li J., Du Y. et al. Ceria nanocrystals decorated mesoporous silica nanoparticle-based ROS-scavenging tissue adhesive for highly efficient regenerative wound healing. Biomaterials. 2018; 151:66–77. DOI: https://doi.org/10.1016/j.biomaterials.2017.10.018
Hajialyani M., Tewari D., Sobarzo-Sánchez E., Nabavi S.M., Farzaei M.H. and Abdollahi M. Natural product-based nanomedicines for wound healing purposes: Therapeutic targets and drug delivery systems. Int. J. Nanomedicine. 2018; 13:5023–5043. DOI: https://doi.org/10.2147/IJN.S174072
Huesca-Urióstegui K., García-Valderrama E.J., Gutierrez-Uribe J.A., Antunes-Ricardo M. and Guajardo-Flores D. Nanofiber systems as herbal bioactive compounds carriers: Current applications in healthcare. Pharmaceutics. 2022; 14:2582. DOI: https://doi.org/10.3390/pharmaceutics14010191
Bölgen N., Demir D., Yalçın M.S. and Özdemir S. Development of Hypericum perforatum oil incorporated antimicrobial and antioxidant chitosan cryogel as a wound dressing material. Int. J. Biol. Macromol. 2020; 161:1581–1590. DOI: https://doi.org/10.1016/j.ijbiomac.2020.08.056
Agarwal Y., Rajinikanth P.S., Ranjan S., Tiwari U., Balasubramaniam J., Pandey P. et al. Curcumin-loaded polycaprolactone/polyvinyl alcohol–silk fibroin-based electrospun nanofibrous mat for rapid healing of diabetic wound: In vitro and in vivo studies. Int. J. Biol. Macromol. 2021; 176:376–386. DOI: https://doi.org/10.1016/j.ijbiomac.2021.02.025
Mohanty S., Maity T.N., Mukhopadhyay S., Sarkar S., Gurao N.P. and Bhowmick S. et al. Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties. Mater. Sci. Eng. A. 2017; 679:299–313. DOI: https://doi.org/10.1016/j.msea.2016.09.062
Alven S. and Aderibigbe B.A. Hyaluronic acid-based scaffolds as potential bioactive wound dressings. Polymers (Basel). 2021; 13:2102. DOI: https://doi.org/10.3390/polym13132102
Yan J., Li W., Tian H., Li B., Yu X., Wang G. et al. Metal-phenolic nanomedicines regulate T-cell antitumor function for sono-metabolic cancer therapy. ACS Nano. 2023; 17:14667–14677. Available from: https://pubs.acs.org/doi/full/10.1021/acsnano.3c02428 DOI: https://doi.org/10.1021/acsnano.3c02428
Zhu C. and Kaldis P. Retraction: Metallic ions encapsulated in electrospun nanofiber for antibacterial and angiogenesis function to promote wound repair. Front. Cell Dev. Biol. 2021; 9:1058556. DOI: https://doi.org/10.3389/fcell.2021.660571
Bhadauriya P., Mamtani H., Ashfaq M., Raghav A., Teotia A.K., Kumar A. et al. Synthesis of yeast-immobilized and copper nanoparticle-dispersed carbon nanofiber-based diabetic wound dressing material: Simultaneous control of glucose and bacterial infections. ACS Appl. Bio Mater. 2018; 1:246–258. DOI: https://doi.org/10.1021/acsabm.8b00018
Santiago-Castillo K., Torres-Huerta A.M., Del Ángel-López D., Domínguez-Crespo M.A., Dorantes-Rosales H., Palma-Ramírez D. et al. In situ growth of silver nanoparticles on chitosan matrix for the synthesis of hybrid electrospun fibers: Analysis of microstructural and mechanical properties. Polymers (Basel). 2022; 14:4127. DOI: https://doi.org/10.3390/polym14040674
Sun X., Fang Y., Tang Z., Wang Z., Liu X. and Liu H. Mesoporous silica nanoparticles carried on chitosan microspheres for traumatic bleeding control. Int. J. Biol. Macromol. 2019; 127:311–319. DOI: https://doi.org/10.1016/j.ijbiomac.2019.01.039
Rathinavel S., Korrapati P.S., Kalaiselvi P. and Dharmalingam S. Mesoporous silica incorporated PCL/Curcumin nanofiber for wound healing application. Eur. J. Pharm. Sci. 2021; 167:106012. DOI: https://doi.org/10.1016/j.ejps.2021.106021
Kirsch-Volders M., Decordier I., Elhajouji A., Plas G., Aardema M.J. and Fenech M. In vitro genotoxicity testing using the micronucleus assay in cell lines, human lymphocytes and 3D human skin models. Mutagenesis. 2011; 26:177–184. DOI: https://doi.org/10.1093/mutage/geq068
Kohl Y., Rundén-Pran E., Mariussen E., Hesler M., Yamani N. El, Longhin E.M. et al. Genotoxicity of nanomaterials: Advanced in vitro models and high throughput methods for human hazard assessment—A review. Nanomaterials. 2020; 10:1919. DOI: https://doi.org/10.3390/nano10101911
Barua S. and Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today. 2014; 9:223–243. DOI: https://doi.org/10.1016/j.nantod.2014.04.008
Kim H., Choi J., Lee H., Park J., Yoon B. I., Jin S.M. et al. Skin corrosion and irritation test of nanoparticles using reconstructed three-dimensional human skin model, EpiDerm™. Toxicol. Res. 2016; 32:311–316. DOI: https://doi.org/10.5487/TR.2016.32.4.311
OECD. Test No. 439: In Vitro Skin Irritation: Reconstructed Human Epidermis Test Method [Internet]. OECD; 2021 [cited 2024 Mar 13]. Available from: https://www.oecd-ilibrary.org/environment/test-no-439-in-vitro-skin-irritation-reconstructed-human-epidermis-test-method_9789264242845-en
OECD. Test No. 431: In vitro skin corrosion: reconstructed human epidermis (RHE) test method [Internet]. OECD; 2015 [cited 2024 Mar 13]. Available from: https://www.oecd-ilibrary.org/environment/test-no-431-in-vitro-skin-corrosion-reconstructed-human-epidermis-rhe-test-method_9789264242753-en
Park Y.H., Jeong S.H., Yi S.M., Choi B.H., Kim Y.R., Kim I.K. et al. Analysis for the potential of polystyrene and TiO₂ nanoparticles to induce skin irritation, phototoxicity, and sensitization. Toxicol. In Vitro. 2011; 25:1863–1869. DOI: https://doi.org/10.1016/j.tiv.2011.05.022
Jeong S.H., Park Y.H., Choi B.H., Kim J.H., Sohn K.H., Park K.L., Kim M.K. and Son S.W. Assessment of the skin irritation potential of quantum dot nanoparticles using a human skin equivalent model. J. Dermatol. Sci. 2010; 59:147–148. DOI: https://doi.org/10.1016/j.jdermsci.2010.06.002
Park Y.H., Kim J.N., Jeong S.H., Choi J.E., Lee S.H., Choi B.H. et al. Assessment of dermal toxicity of nanosilica using cultured keratinocytes, a human skin equivalent model and an in vivo model. Toxicology. 2010; 267:178–181. DOI: https://doi.org/10.1016/j.tox.2009.10.011
Miyani V.A. and Hughes M.F. Assessment of the in vitro dermal irritation potential of cerium, silver, and titanium nanoparticles in a human skin equivalent model. Cutan. Ocul. Toxicol. 2017; 36:145–151. DOI: https://doi.org/10.1080/15569527.2016.1211671
Choi J., Kim H., Choi J., Oh S.M., Park J., Park K. Skin corrosion and irritation test of sunscreen nanoparticles using reconstructed 3D human skin model. Environ. Health Toxicol. 2014; 29:e2014004. DOI: https://doi.org/10.5620/eht.2014.29.e2014004
OECD. The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins [Internet]. OECD; 2014 [cited 2024 Mar 13]. Available from: https://www.oecd-ilibrary.org/environment/the-adverse-outcome-pathway-for-skin-sensitisation-initiated-by-covalent-binding-to-proteins_9789264221444-en
Kim S.H., Lee D.H., Lee J.H., Yang J.Y., Seok J.H., Jung K., et al. Evaluation of the skin sensitization potential of metal oxide nanoparticles using the ARE-Nrf2 Luciferase KeratinoSens™ assay. Toxicol. Res. 2021; 37:277–284. DOI: https://doi.org/10.1007/s43188-020-00071-0







