In-silico Innovative mRNA Vaccine Development Using Multi-Epitopes of SopD Protein for Enteric Fever Caused by Salmonella enterica

Authors

  • Aaiza Mumtaz Department of Biotechnology, University of Okara, Pakistan.
  • Hadia Hussain Department of Biotechnology, University of Okara, Pakistan.
  • Muhammad Umair Department of Biotechnology, University of Okara, Pakistan.
  • Wasla Ali Department of Biotechnology, University of Okara, Pakistan.
  • Muhammad Sajid Department of Biotechnology, University of Okara, Pakistan.

DOI:

https://doi.org/10.35516/jjps.v18i2.2819

Keywords:

Enteric fever, Epitopes, Gastroenteritis, S. enterica, Septicemia

Abstract

An increase in antibiotic resistance has created significant challenges in treating Salmonella enterica infections. Consequently, various vaccines have been developed as practical alternatives to antibiotics for preventing S. enterica infections. mRNA vaccine technology is rapidly advancing as a replacement for conventional methods due to its high efficiency, low cost, and ability to elicit a strong humoral immune response. This research aims to develop a novel mRNA vaccine against S. enterica using immunoinformatics approaches. The protein SopD was selected, and its suitable epitopes were identified. These epitopes were evaluated to ensure they are antigenic, non-allergenic, and non-toxic. Subsequently, the epitopes were linked using appropriate linkers to create a vaccine construct. This construct was further analyzed and subjected to molecular docking with the Toll-like receptor TLR3 using the HDock server. Molecular dynamics (MD) simulations showed that the vaccine construct is stable based on RMSD and RMSF parameters. Immune simulation indicated the vaccine’s efficacy, and it was successfully cloned using the SnapGene tool. Finally, a multi-epitope protein was modeled and optimized. The results demonstrated that the vaccine construct is effective, non-allergenic, non-toxic, and successfully cloned. Overall, the findings suggest that the designed mRNA vaccine construct could be a promising candidate for S. enterica treatment, pending validation through in vitro techniques such as ELISA and in vivo testing in animal models.

References

House D., et al. Typhoid fever: pathogenesis and disease. Current Opin. Infect. Dis. 2001; 14(5):573-578. DOI: https://doi.org/10.1097/00001432-200110000-00011

Crump J.A., Luby S.P., Mintz E.D. The global burden of typhoid fever. Bull. World Health Organ. 2004; 82(5):346-353.

Greenaway C., et al. Typhoid: summary of the statement on international travellers and typhoid by the committee to advise on tropical medicine and travel (CATMAT). Canada Communicable Dis. Rep. 2014; 40(4):60. DOI: https://doi.org/10.14745/ccdr.v40i04a01

Raffatellu M., et al. Clinical pathogenesis of typhoid fever. J. Infect. Dev. Ctries. 2008; 2(4):260-266. DOI: https://doi.org/10.3855/jidc.219

Bányai K., et al. Viral gastroenteritis. Lancet 2018; 392(10142):175-186. DOI: https://doi.org/10.1016/S0140-6736(18)31128-0

Schaefer K., et al. Septicemia due to Listeria monocytogenes infection: A systematic review and meta-analysis. Foodborne Pathog. Dis. 2022; 19(2):104-114. DOI: https://doi.org/10.1089/fpd.2021.0046

Neupane D.P., Dulal H.P., Song J. Enteric fever diagnosis: current challenges and future directions. Pathogens 2021; 10(4):410. DOI: https://doi.org/10.3390/pathogens10040410

Wain J., Hosoglu S. The laboratory diagnosis of enteric fever. J. Infect. Dev. Ctries. 2008; 2(6):421-425. DOI: https://doi.org/10.3855/jidc.155

Azmatullah A., et al. Systematic review of the global epidemiology, clinical and laboratory profile of enteric fever. J. Glob. Health 2015; 5(2). DOI: https://doi.org/10.7189/jogh.05.020407

Adesegun O.A., et al. Current trends in the epidemiology and management of enteric fever in Africa: a literature review. Asian Pac. J. Trop. Med. 2020; 13(5):204-213. DOI: https://doi.org/10.4103/1995-7645.283515

Saha T., et al. Enteric fever: diagnostic challenges and the importance of early intervention. Cureus 2023; 15(7). DOI: https://doi.org/10.7759/cureus.41831

Dahiya S., et al. Current antibiotic use in the treatment of enteric fever in children. Indian J. Med. Res. 2019; 149(2):263-269. DOI: https://doi.org/10.4103/ijmr.IJMR_199_18

Kuehn R., et al. Treatment of enteric fever (typhoid and paratyphoid fever) with cephalosporins. Cochrane Database Syst. Rev. 2022;(11). DOI: https://doi.org/10.1002/14651858.CD010452.pub2

Parry C.M., et al. What should we be recommending for the treatment of enteric fever? Open Forum Infect. Dis. 2023; Oxford University Press US. DOI: https://doi.org/10.1093/ofid/ofad179

Qamar F.N., Hussain W., Qureshi S. Salmonellosis including enteric fever. Pediatr. Clin. 2022; 69(1):65-77. DOI: https://doi.org/10.1016/j.pcl.2021.09.007

Soulier A., et al. Engineering a novel bivalent oral vaccine against enteric fever. Int. J. Mol. Sci. 2021; 22(6):3287. DOI: https://doi.org/10.3390/ijms22063287

Masuet-Aumatell C., Atouguia J. Typhoid fever infection–antibiotic resistance and vaccination strategies: A narrative review. Travel Med. Infect. Dis. 2021; 40:101946. DOI: https://doi.org/10.1016/j.tmaid.2020.101946

Knodler L.A., Elfenbein J.R. Salmonella enterica. Trends Microbiol. 2019; 27(11):964-965. DOI: https://doi.org/10.1016/j.tim.2019.05.002

Andino A., Hanning I. Salmonella enterica: survival, colonization, and virulence differences among serovars. Sci. World J. 2015; 2015:520179. DOI: https://doi.org/10.1155/2015/520179

Brombacher E., et al. Gene expression regulation by the curli activator CsgD protein: modulation of cellulose biosynthesis and control of negative determinants for microbial adhesion. J. Bacteriol. 2006; 188(6):2027-2037. DOI: https://doi.org/10.1128/JB.188.6.2027-2037.2006

Attmannspacher U., Scharf B.E., Harshey R.M. FliL is essential for swarming: motor rotation in absence of FliL fractures the flagellar rod in swarmer cells of Salmonella enterica. Mol. Microbiol. 2008; 68(2):328-341. DOI: https://doi.org/10.1111/j.1365-2958.2008.06170.x

Zaru R., Orchard S., U. Consortium. UniProt tools: BLAST, align, peptide search, and ID mapping. Curr. Protoc. 2023; 3(3):e697. DOI: https://doi.org/10.1002/cpz1.697

Dhanda S.K., et al. IEDB-AR: immune epitope database—analysis resource in 2019. Nucleic Acids Res. 2019; 47(W1):W502-W506. DOI: https://doi.org/10.1093/nar/gkz452

Aqsha Z.M., et al. Reverse vaccinology analysis of B-cell epitope against Nipah virus using fusion protein. Jordan J. Pharm. Sci. 2023; 16(3):499-507. DOI: https://doi.org/10.35516/jjps.v16i3.1602

Kim Y., Sette A., Peters B. Applications for T-cell epitope queries and tools in the Immune Epitope Database and Analysis Resource. J. Immunol. Methods 2011; 374(1-2):62-69. DOI: https://doi.org/10.1016/j.jim.2010.10.010

Kumar S., Hasija Y. Immunoinformatics tools: a boon in vaccine development against COVID-19. In: IEEE Delhi Section Conference (DELCON). IEEE; 2022. DOI: https://doi.org/10.1109/DELCON54057.2022.9753152

Dimitrov I., Flower D.R., Doytchinova I. AllerTOP—a server for in silico prediction of allergens. In: BMC Bioinformatics. Springer; 2013. DOI: https://doi.org/10.1186/1471-2105-14-S6-S4

Fleri W., et al. The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. Front. Immunol. 2017; 8:2503. DOI: https://doi.org/10.3389/fimmu.2017.00278

Gupta S., et al. In silico approach for predicting toxicity of peptides and proteins. PLoS One 2013; 8(9):e73957. DOI: https://doi.org/10.1371/journal.pone.0073957

Rajendhiran N., Bhattacharyya S. Preparation and evaluation of nanolipid carriers of bedaquiline—in vitro evaluation and in silico prediction. Jordan J. Pharm. Sci. 2024; 17(3):450-467. DOI: https://doi.org/10.35516/jjps.v17i3.1970

Gasteiger E., et al. Protein identification and analysis tools on the ExPASy server. Springer; 2005. DOI: https://doi.org/10.1385/1-59259-890-0:571

McGuffin L.J., Bryson K., Jones D.T. The PSIPRED protein structure prediction server. Bioinformatics 2000; 16(4):404-405. DOI: https://doi.org/10.1093/bioinformatics/16.4.404

Dym O., Eisenberg D., Yeates T. ERRAT. 2012.

Yan Y., et al. The HDOCK server for integrated protein–protein docking. Nat. Protoc. 2020; 15(5):1829-1852. DOI: https://doi.org/10.1038/s41596-020-0312-x

Tarantola S., Becker W. SIMLAB software for uncertainty and sensitivity analysis. In: Ghanem R., Higdon D., Owhadi H., editors. Handbook of Uncertainty Quantification. 2016; p. 1979-1999. DOI: https://doi.org/10.1007/978-3-319-12385-1_61

Ponomarenko J., et al. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 2008; 9:1-8. DOI: https://doi.org/10.1186/1471-2105-9-514

Laskowski R.A., et al. PDBsum: structural summaries of PDB entries. Protein Sci. 2018; 27(1):129-134. DOI: https://doi.org/10.1002/pro.3289

Laskowski R.A., et al. PDBsum: a web-based database of summaries and analyses of all PDB structures. Trends Biochem. Sci. 1997; 22(12):488-490. DOI: https://doi.org/10.1016/S0968-0004(97)01140-7

Grote A., et al. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 2005; 33(suppl_2):W526-W531. DOI: https://doi.org/10.1093/nar/gki376

Taneda A., Sato K. A web server for designing molecular switches composed of two interacting RNAs. Int. J. Mol. Sci. 2021; 22(5):2720. DOI: https://doi.org/10.3390/ijms22052720

Castiglione F., Bernaschi M. C-immsim: playing with the immune response. In: Proceedings of the Sixteenth International Symposium on Mathematical Theory of Networks and Systems (MTNS2004). Katholieke Universiteit Leuven, Belgium; 2004.

Consortium U. UniProt: a hub for protein information. Nucleic Acids Res. 2015; 43(D1):D204-D212. DOI: https://doi.org/10.1093/nar/gku989

Doytchinova I.A., Flower D.R. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 2007; 8:1-7. DOI: https://doi.org/10.1186/1471-2105-8-4

Rathore A.S., et al. ToxinPred 3.0: an improved method for predicting the toxicity of peptides. bioRxiv 2023; 2023.08.11.552911. DOI: https://doi.org/10.1101/2023.08.11.552911

Bui H.-H., et al. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics 2006; 7:1-5. DOI: https://doi.org/10.1186/1471-2105-7-153

Babnigg G., Joachimiak A. Predicting protein crystallization propensity from protein sequence. J. Struct. Funct. Genomics 2010; 11:71-80. DOI: https://doi.org/10.1007/s10969-010-9080-0

Teng D., et al. 3DPro: querying complex three-dimensional data with progressive compression and refinement. In: Advances in Database Technology: Proceedings of the International Conference on Extending Database Technology. NIH Public Access; 2022.

Ko J., et al. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res. 2012; 40(W1):W294-W297. DOI: https://doi.org/10.1093/nar/gks493

Sheik S., et al. Ramachandran plot on the web. Bioinformatics 2002; 18(11):1548-1549. DOI: https://doi.org/10.1093/bioinformatics/18.11.1548

Maslov O., et al. Evaluation of anti-inflammatory, antioxidant activities and molecular docking analysis of Rubus idaeus leaf extract. Jordan J. Pharm. Sci. 2024; 17(1):105-122. DOI: https://doi.org/10.35516/jjps.v17i1.1808

Yan Y., et al. HDOCK: a web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res. 2017; 45(W1):W365-W373. DOI: https://doi.org/10.1093/nar/gkx407

Laskowski R.A. PDBsum: summaries and analyses of PDB structures. Nucleic Acids Res. 2001; 29(1):221-222. DOI: https://doi.org/10.1093/nar/29.1.221

Olson S.A. EMBOSS opens up sequence analysis. Brief. Bioinform. 2002; 3(1):87-91. DOI: https://doi.org/10.1093/bib/3.1.87

Al-Kanany F.N., Othman R.M. Cloning and expression of Pseudomonas aeruginosa AlkB gene in E. coli. J. Pure Appl. Microbiol. 2020; 14(1). DOI: https://doi.org/10.22207/JPAM.14.1.40

Hegazy W.A.H., Hensel M. Salmonella enterica as a vaccine carrier. Future Microbiol. 2012; 7(1):111-127. DOI: https://doi.org/10.2217/fmb.11.144

Crouch C.F., et al. Safety and efficacy of a novel inactivated trivalent Salmonella enterica vaccine in chickens. Vaccine 2020; 38(43):6741-6750. DOI: https://doi.org/10.1016/j.vaccine.2020.08.033

Wisner A.L., et al. Immunization of chickens with Salmonella enterica subspecies enterica serovar Enteritidis pathogenicity island-2 proteins. Vet. Microbiol. 2011; 153(3-4):274-284. DOI: https://doi.org/10.1016/j.vetmic.2011.05.041

Garmory H.S., Brown K.A., Titball R.W. Salmonella vaccines for use in humans: present and future perspectives. FEMS Microbiol. Rev. 2002; 26(4):339-353. DOI: https://doi.org/10.1111/j.1574-6976.2002.tb00619.x

Jawalagatti V., Kirthika P., Lee J.H. Oral mRNA vaccines against infectious diseases—A bacterial perspective. Front. Immunol. 2022; 13:884862. DOI: https://doi.org/10.3389/fimmu.2022.884862

Abadi M.H.J.N., et al. In silico design and immunoinformatics analysis of a chimeric vaccine construct based on Salmonella pathogenesis factors. Microb. Pathog. 2023; 180:106130. DOI: https://doi.org/10.1016/j.micpath.2023.106130

Oyarzun P., Kobe B. Computer‐aided design of T‐cell epitope‐based vaccines: addressing population coverage. Int. J. Immunogenet. 2015; 42(5):313-321. DOI: https://doi.org/10.1111/iji.12214

Mallik B., Morikis D. Applications of molecular dynamics simulations in immunology: a useful computational method in aiding vaccine design. Curr. Proteomics 2006; 3(4):259-270 DOI: https://doi.org/10.2174/157016406780655568

Downloads

Published

2025-06-25

How to Cite

Mumtaz, A., Hussain, H., Umair, M., Ali, W., & Sajid, M. (2025). In-silico Innovative mRNA Vaccine Development Using Multi-Epitopes of SopD Protein for Enteric Fever Caused by Salmonella enterica. Jordan Journal of Pharmaceutical Sciences, 18(2), 437–460. https://doi.org/10.35516/jjps.v18i2.2819

Issue

Section

Articles