العلاقة بين مستويات الزّنك والنّحاس ومقاومة الأنسولين لدى مريضات متلازمة المبيض متعدّد الكيسات في مدينة حمص

المؤلفون

  • Lana Alzahr قسم الكيمياء الحيويّة والأحياء الدّقيقة، كليّة الصّيدلة، جامعة البعث، حمص، سوريا.
  • Sulaf Alwassouf قسم الكيمياء الحيويّة والأحياء الدّقيقة، كليّة الصّيدلة، جامعة البعث، حمص، سوريا.

DOI:

https://doi.org/10.35516/jjps.v17i2.1787

الكلمات المفتاحية:

متلازمة المبيض متعدّد الكيسات، الزّنك، النّحاس، مقاومة الأنسولين

الملخص

الهدف: دراسة العلاقة بين مستويات الزّنك والنّحاس ومقاومة الأنسولين الّتي هي الآليّة الإمراضيّة الرّئيسيّة لمتلازمة المبيض متعدّد الكيسات (PCOS)، ومقارنة مستويات المعادن مع الأشخاص الأصحّاء في حمص.

طريقة العمل: شمل البحث 63 مريضة تم تشخيصهن حديثاً بمتلازمة المبيض متعدّد الكيسات، وقبل أن  تتم معالجتهن في مستشفى الباسل في حمص، سوريا، إلى جانب 25 امرأة سليمة من نفس العمر. تمَّ الحصول على عيّنات الدّم باستخدام الأنابيب الجافّة للقيام بمقايسة مستويات الزّنك والنّحاس والغلوكوز وهرمون الأنسولين. وفي وقت لاحق، تم حساب المؤشّرات التّالية HOMA-IR وQUICK.

النّتائج: في مجموعة المريضات، كانت مستويات الزّنك في الدّم أقل بشكل ملحوظ ((p = 0.000، وكانت مستويات النّحاس في الدّم أعلى بشكل ملحوظ ((p = 0.000  مقارنة بالأشخاص الأصحّاء. في المريضات الّلواتي تعانين من مقاومة الأنسولين، كانت مستويات الزّنك في الدّم أقل بشكل ملحوظ (p = 0.004)، وكانت مستويات النّحاس في الدّم أعلى بشكل ملحوظ (p = 0.000) مقارنة بالمريضات الّلواتي لا تعانين من مقاومة الأنسولين. في المريضات الّلواتي لا تعانين من مقاومة الأنسولين مقارنة بالنّساء السّليمات، كانت مستويات الزّنك في الدّم أقل بشكل ملحوظ (p = 0.000)، وكانت مستويات النّحاس في الدّم أعلى بشكل ملحوظ (p = 0.000). وُجِد ارتباط إيجابي بين النّحاس وHOMA-IR  (r=0.572**) p=0.000))، وارتباط سلبي بين الزّنك وHOMA-IR  (r=-0.865**)  (p=0.000).

الخلاصة: إنَّ خلل مستويات الزّنك والنّحاس له آثار على تطوّر متلازمة المبيض متعدّد الكيسات، سواء ترافقت مع مقاومة الأنسولين أو تواجدت بشكل مستقل عنها.

المراجع

Ajmal N., Khan S., and Shaikh R. Polycystic ovary syndrome (PCOS) and genetic predisposition: A review article. European Journal of Obstetrics & Gynecology and Reproductive Biology: X. 2019; 3:100060. http://dx.doi.org/10.1016/j.eurox.2019.100060 DOI: https://doi.org/10.1016/j.eurox.2019.100060

Peña A. S., Codner E., and Witchel S. Criteria for Diagnosis of Polycystic Ovary Syndrome during Adolescence: Literature Review. Diagnostics. 2022; 12:1931. https://doi.org/10.3390/diagnostics12081931. DOI: https://doi.org/10.3390/diagnostics12081931

El Sayed A. M., El Ghwaji W., Youseif, Z. M., El-Deeb K. S., and ElSayed, A. M. Fertility control impact of the aerial parts Ferula tingitana L. via alteration of hypothalamic-pituitary-gonadal axis responses of female Wistar rats. Jordan Journal of Pharmaceutical Sciences. 2022; 15(1). DOI: https://doi.org/10.35516/jjps.v15i1.285

Saadia Z. Follicle Stimulating Hormone (LH: FSH) Ratio in Polycystic Ovary Syndrome (PCOS) - Obese vs. Non- Obese Women. Medical archives (Sarajevo, Bosnia and Herzegovina). 2020; 74(4):289-293.

http://dx.doi:10.5455/medarh.2020.74.289-293. DOI: https://doi.org/10.5455/medarh.2020.74.289-293

Teede H., Michelmore J., McCallister V., and Norman R. Norman RJ on behalf of the International PCOS Network. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil Steril In press, (2018). DOI: https://doi.org/10.1093/humrep/dey363

Xu, Y. and Qiao, J. Association of Insulin Resistance and Elevated Androgen Levels with Polycystic Ovarian Syndrome (PCOS): A Review of Literature. Journal of Healthcare Engineering. 2022.

https://doi.org/10.1155/2022/9240569. DOI: https://doi.org/10.1155/2022/9240569

Rocha, A. L., Oliveira, F. R., Azevedo, R. C., Silva, V. A., Peres, T. M., Candido, A. L., Gomes, K. B., and Reis, F. M. Recent advances in the understanding and management of polycystic ovary syndrome. F1000Research. 2019; 8:565.

https://doi.org/10.12688/f1000research.15318.1. DOI: https://doi.org/10.12688/f1000research.15318.1

Safarzad, M., Jazi, M. S., Kiaei, M., Asadi, J. Lower serum zinc level is associated with higher fasting insulin in type 2 diabetes mellitus (T2DM) and relates with disturbed glucagon suppression response in male patients. Prim Care Diabetes. 2023; 17(5):493-498. https://doi: 10.1016/j.pcd.2023.05.008 . DOI: https://doi.org/10.1016/j.pcd.2023.05.008

Khalighinejad, P., Suh, E. H., Sherry, A. D. MRI Methods for Imaging Beta-Cell Function in the Rodent Pancreas. Methods Mol Biol. 2023; 2592:101-111. https://doi: 10.1007/978-1-0716-2807-2_7 . DOI: https://doi.org/10.1007/978-1-0716-2807-2_7

Zhang C. Internalization and trafficking of zinc transporters. Methods in Enzymology. 2023; 687:241-262. https://doi: 10.1016/bs.mie.2023.06.004 DOI: https://doi.org/10.1016/bs.mie.2023.06.004

Tamura Y. The Role of Zinc Homeostasis in the Prevention of Diabetes Mellitus and Cardiovascular Diseases. Journal of Atherosclerosis and Thrombosis. 2021; 28:1109-1122. http://doi.org/10.5551/jat.RV17057.

Kopeček, J., Bajtošová, L., Veřtát, P., and Šimek, D. Structure Development in Gradually Swaged Electroconductive Bars. Materials (Basel). 2023; 16(15):5324.

https://doi: 10.3390/ma16155324. DOI: https://doi.org/10.3390/ma16155324

Ribeiro, J. C., Braga, P. C., Martins, A. D., Silva, B. M., Alves, M. G., and Oliveira P.F. Antioxidants Present in Reproductive Tract Fluids and Their Relevance for Fertility. Antioxidants. 2022; 10:1441. DOI: https://doi.org/10.3390/antiox10091441

Nishito Yand Kambe T. Absorption mechanisms of iron, copper, and zinc: An overview. Journal of Nutritional Science and Vitaminology. 2018; 64:1-7. DOI: https://doi.org/10.3177/jnsv.64.1

Taylor, A. A., Tsuji, J. S., Garry, M. R., McArdle, M. E., Goodfellow, Jr. W. L., Adams, W. J., and Menzi, C. A. Critical Review of Exposure and Effects: Implications for Setting Regulatory Health Criteria for Ingested Copper. Environmental Managements. 2020; 65:(131-159):5324. https://doi.org/10.1007/s00267-019-01234-y DOI: https://doi.org/10.1007/s00267-019-01234-y

Malavolta, M., Piacenza, F., Basso, A., Giacconi, R., Costarelli, L., and Mocchegiani, E. Serum copper to zinc ratio: Relationship with aging and health status. Elsevier. 2015; 151:93-100. http://dx.doi.org/10.1016/j.mad.2015.01.004 DOI: https://doi.org/10.1016/j.mad.2015.01.004

Juita, T. R., Hildayanti, R. A., Wahyuni, S., Handono, K., Irwanto, Y., Raharjo, B., Rahajeng, R., and Handayani, T. S. The Effect of Black Garlic Extract on Levels of IL-6, TGF-β, TNF-α, IL-10, Vaginal pH, Bacterial Colonies in Pregnant Rats Aerobic Vaginitis Model. Jordan Journal of Pharmaceutical Sciences. 2022; 15(4). DOI: https://doi.org/10.35516/jjps.v15i4.669 DOI: https://doi.org/10.35516/jjps.v15i4.669

Sidhu, A., Miller, P. J., and Hollenbach A. D. FOXO1 stimulates ceruloplasminpromoter activity in human hepatoma cells treated with IL-6. Biochem. Biophys. Res. Commun. 2011; 404:963–967. DOI: https://doi.org/10.1016/j.bbrc.2010.12.089

Beker, A. T., Chang, S. M., Guthrie, G. J., Maki, A. B., Ryu, M. S., Karabiyik, A. and Cousins, R. J. Zinc transporter ZIP14 functions in hepatic zinc, iron and glucosehomeostasis during the innate immune response (endotoxemia). PLoS One. 2012; 7:e48679. DOI: https://doi.org/10.1371/journal.pone.0048679

Kanafchian, M., Mahjoub, S., Esmaeilzadeh, S., Rahsepar, M., and Mosapour, A. Status of serum selenium and zinc in patients with the polycystic ovary syndrome with and without insulin resistance. Middle East Fertility Society Journal. 2017; 23:241-245.

http://dx.doi.org/10.1016/j.mefs.2017.11.003. DOI: https://doi.org/10.1016/j.mefs.2017.11.003

Mohammed, A. H., Awad, N. A., and AL-Fartosy, A.JM. Study of Trace Elemants Selenium, Copper, Zinc and Manganese Level in Polycystic Ovary Syndrome (PCOS). International Journal for Research in Applied Sciences and Biotechnology. 2019; 6:2349-8889.

http://dx.doi.org/10.31033/ijrasb.6.6.4. DOI: https://doi.org/10.31033/ijrasb.6.6.4

Kanafchian, M., Esmaeilzadeh, S., Mahjoub, S., Rahsepar, M., and Ghasemi M. Status of Serum Copper, Magnesium, and Total Antioxidants Capacity in Patients with Polycystic Ovary Syndrome. 2019. DOI: https://doi.org/10.1007/s12011-019-01705-7

http://dx.doi.org/10.1007/s12011-019-017057.

Pokorska-Niewiada, K., Brodowska, A. and Szuzuko, M. The Content of Minerals in the PCOS Group and the Correlation with the Parameters of Merabolism. Nutrients. 2021; 13:2214. DOI: https://doi.org/10.3390/nu13072214

http://dx.doi.org/10.3390/nul3072214.

Bellomo, E., Massarotti, A., Hogstrand, C. and Maret, W. Zinc ions modulate protein tyrosine phosphatase 1B activity. Metallomics. 2014; 6:1229–1239. DOI: https://doi.org/10.1039/C4MT00086B

http://doi.org/10.5551/jat.RV17057.

Alqassieh, R., Odeh, M., and Jirjees, F. Intraoperative Insulin Infusion Regimen versus Insulin Bolus Regimen for Glucose Management during CABG Surgery: A Randomized Clinical Tr. Jordan Journal of Pharmaceutical Sciences. 2023; 16(3).

DOI: https://doi.org/10.35516/jjps.v16i3.708 DOI: https://doi.org/10.35516/jjps.v16i3.708

Vardatsikos, G., Pandey, N. R., and Srivastava, A. K. Insulino-mimetic and anti-diabetic effects of zinc. J Inorg Biochem. 2013; 120:8-17. DOI: https://doi.org/10.1016/j.jinorgbio.2012.11.006

http://doi.org/10.5551/jat.RV17057 DOI: https://doi.org/10.5551/jat.RV17057

Naskar, A., Dasgupta, A., and Acharya, K. Antioxidant and Cytotoxic Activity of Lentinus fasciatu. Jordan Journal of Pharmaceutical Sciences. 2023; 16(1): 2023.

DOI: https://doi.org/10.35516/jjps.v16i1.1064 DOI: https://doi.org/10.35516/jjps.v16i1.1064

Rochette, L. et al. Diabetes, oxidative stress and therapeutic strategies. Biochimica et Biophysica Acta. 2014; 1840(9):2709-2729. DOI: https://doi.org/10.1016/j.bbagen.2014.05.017

Bizon, A., Slowiak, A., Franik, G., Biernacka-Bartnik, A., and Madej, P. Zinc, copper, sirtuin 1 concentration, and glucose metabolism parameters in the blood of women with polycystic ovary syndrome. Gynecological Endocrinology. 2020. DOI: https://doi.org/10.1080/09513590.2020.1751111

http://doi.org/10.1080/09513590.20201751111

Cummings, J. E. and Kovacic, J. P. The ubiquitous role of zinc in health and disease. J. Vet. Emerg. Crit. Care. 2009; 19:215-240.

Nasiadek, M., Stragierowicz, J., and Kilanowicz, A. The Role of Zinc in Selected Female Reproductive System Disorders. Nutrients. 2020; 12:2464. DOI: https://doi.org/10.3390/nu12082464

http://doi.org/103390/nu12082464.

Cummings, J. E. and Kovacic, J. P. The ubiquitous role of zinc in health and disease. J. Vet. Emerg. Crit. Care. 2009, 19: 215-240. DOI: https://doi.org/10.1111/j.1476-4431.2009.00418.x

Wang, H., Hu, Y. F., Hao, J. H., Chen, Y. H., Su, P.Y., Wang, Y., Yu, Z., Fu, L., Xu, Y. Y., Zhang, C. et al. Maternal zinc deficiency during pregnancy elevates the risks of fetal growth restriction: A population-based birth cohort study. Sci. Rep. 2015; 5:11262. DOI: https://doi.org/10.1038/srep11262

Özer, A., Bakacak, M., Kıran, H., Ecran, Ö., Köstö, B., Kanat-Pektaş, M., and Aslan, F. Increased oxidative stress is associated with insulin resistance and infertility in polycystic ovary syndrome. VIA MEDICA. 2016; 87(11):733-738. http://doi.org/10.5603/GP.2016.0079. DOI: https://doi.org/10.5603/GP.2016.0079

Hussien, K. A., Al-Salih, R. M., and Ali, S. A. Evaluation of Hormones and Trace Elements in Women with Unexplained Infertility. University of Thi-Qar Journal of Medicine. 2017; 14:2.

Watts, D. and David, L. Trace Elements and Other Essential Nutrients. 4th Writ B-L-O-C-K Ed USA. (2003).

David, L. and Watts, D. The Nutritional Relationships of Copper. J Orthomol Med. 1989; 4:99-108

التنزيلات

منشور

2024-06-25

كيفية الاقتباس

Alzahr, L., & Alwassouf, S. (2024). العلاقة بين مستويات الزّنك والنّحاس ومقاومة الأنسولين لدى مريضات متلازمة المبيض متعدّد الكيسات في مدينة حمص. Jordan Journal of Pharmaceutical Sciences, 17(2), 242–253. https://doi.org/10.35516/jjps.v17i2.1787

إصدار

القسم

Articles