العوامل المتداخلة المؤثرة في تبني تطبيقات البيانات الضخمة: دراسة تطبيقية في الأردن

المؤلفون

  • Rand Al-Dmour
  • Eatedal Ahmed Amin
  • Nour Saad
  • Hala Zaidan

الكلمات المفتاحية:

تبني تطبيقات البيانات الضخمة، العوامل التنظيمية، العوامل التكنولوجية، العوامل البيئية، البنوك التجارية

الملخص

تهدف هذه الدراسة إلى التعرف إلى العوامل الرئيسية المتداخلة التي تؤثر في تبني تطبيقات البيانات الضخمة من قبل البنوك التجارية العاملة في الأردن. وبناءً على مراجعة الأدبيات ونموذج اعتماد التكنولوجيا، تم تطوير نموذج دراسة للاسترشاد به في تحقيق أهداف الدراسة. وقد تم استخدام منهج المسح لجمع البيانات المطلوبة من 235 مستجيبًا مستهدفًا كانوا يشغلون مواقع قيادية في الإدارة العليا في البنوك التجارية العاملة في الأردن.

وقد أشارت نتائج الدراسة إلى أنه يمكن استخلاص تسعة عوامل من ثلاثة تراكيب رئيسية: 1) ثلاثة عوامل من الهيكل التنظيمي (دعم الإدارة العليا والجاهزية، وتوجيه استراتيجية العمل، والموارد التنظيمية) و(2) ثلاثة عوامل من البناء التكنولوجي (التوافق، والتعقيد، والأمن والخصوصية) و(3) ثلاثة عوامل من البناء البيئي (هيكل سوق الأعمال، وهيكل المنافسة، واللوائح الحكومية). وقد أظهرت النتائج أن العوامل التنظيمية والعوامل التكنولوجية والعوامل البيئية تؤثر بشكل كبير وإيجابي في تبني تطبيقات تحليلات البيانات الضخمة في البنوك التجارية العاملة في الأردن، كما وجد أن عامل "الموارد التنظيمية" هو العامل الأول الأكثر أهمية.

المراجع

Abbasi, A., Sarker, S., & Chiang, R. H. 2016. Big Data Research in Information Systems: Toward an Inclusive Research Agenda. Journal of the Association for Information Systems, 17 (2): 3.

Ahmed, V., Tezel, A., Aziz, Z., & Sibley, M. 2017. The Future of Big Data in Facilities’ Management: Opportunities and Challenges. Facilities, 35 (13/14): 725-745.

Al-Dmour, R.H, Love, S., & Al-Zu'bi, Z. 2013. Factors Influencing the Adoption of HRIS Applications: A Literature Review. International Journal of Management & Business Studies, 3 (4): 9-26.

Al-Dmour, R., Abuhashesh, M., Zoubi, G., & Amin, E.A. 2020. Perceived Barriers Hindering the Jordanian SMEs Operating in the Food and Beverage Industry from Engaging in E-commerce: An Empirical Study. Jordan Journal of Business Administration, 16 (2).

Almoqren, N., & Altayar, M. 2016. The Motivations for Big Data Mining Technologies Adoption in Saudi Banks. 4th Saudi International Conference on Information Technology (Big Data Analysis) (KACSTIT), Riyadh, pp. 1-8, DOI:10.1109/KACSTIT. 2016.7756075.

Bhuvana, M., Thirumagal, P.G., & Vasantha, S. 2016. Big Data Analytics: A Leveraging Technology for Indian Commercial Banks. Indian Journal of Science and Technology, 9(32).

Borgman, H.P, Bahli, B., Heier, H., & Schewski, F. 2013. Cloudrise: Exploring Cloud Computing Adoption and Governance with the TOE Framework. 46th Hawaii International Conference on System Sciences, 4425-4435.

Breed, D., & Vester, T. 2019. An Empirical Investigation of Alternative Semi-supervised Segmentation Methodologies. South African Journal of Science, 115 (3/4).

Cabrera-Sanchez, J.P., & Villarejo-Ramos, A.F. 2019. Factors Affecting the Adoption of Big-data Analytics in Companies. Revista de Administração de Empresas, 59 (6), 415-429.

Cameron, K.S., & Quinn, R.E. 2005. Diagnosing and Changing Organizational Culture Based on the Competing Values Framework. Addison-Wesley, Reading, MA.

Chen, M, Mao, S., & Liu, Y. 2014. Big Data: A Survey. Mobile Networks and Applications, 19 (2): 171-209.

Cyber. 2012. Data Equity Unlocking the Value of Big Data. In: SAS Reports, pp. 1-44.

Davis, F.D. 1989. Perceived Usefulness, Perceived Ease of Use and User Acceptance of Information Technology. MIS Quarterly, 319-340.

Davis, F.D. 1993. User Acceptance of Information Technology: System Characteristics, User Perceptions and Behavioural Impacts. International Journal of Man-Mac Hine Studies, 38: 475-487.

DeLone, W.H., & McLean, E.R. 1992. Information Systems Success: The Quest for the Dependent Variable. Information Systems Research, 3 (1): 60-95.

Dezi, L., Santoro, G., Gabteni, H., & Pellicelli, A.C. 2018. The Role of Big Data in Shaping Ambidextrous Business Process Management: Case Studies from the Service Industry, Business Process Management Journal, 24 (5): 1163-1175.

Ducange, P, Pecori, R., & Mezzina, P. 2018. A Glimpse of Big-data Analytics in the Framework of Marketing Strategies. Soft Computing, 22: 325-342.

Elgendy, N., & Elragal, A. 2014. Big-data Analytics: A Literature Review Paper. In: Industrial Conference on Data Mining, 214-227.

Gangwar, H, Date, H., & Ramaswamy, R. 2015. Understanding the Determinants of Cloud Computing Adoption Using an Integrated TAM TOE Model. Journal of Enterprise Information Management, 28 (1).

Giri, K., & Lone, T. 2014. Big Data: Overview and Challenges. International Journal of Advanced Research in Computer Science and Software Engineering, 4 (6): 525-529.

Goyal, Y., Monga, Y., & Mittal, M. 2017. Study and Analytical Perspective on Big Data. International Journal of Computational Systems Engineering, 3 (4): 193-202.

Hair, J.F.J., Hult, G.T.M., Ringle, C.M., & Sarstedt, M. 2017. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 2nd Edition. Sage, Thousand Oaks, CA.

Järvinen, J., & Karjaluoto, H. 2015. The Use of Web Analytics for Digital Marketing Performance Measurement. Industrial Marketing Management, 50: 117-127.

Joseph, R.C., & Johnson, N.A. 2013. Big Data and Transformational Government. IT Professional, 15 (6): 43-48.

Lian, J.W, Yen, D.C., & Wang, Y.T. 2014. An Exploratory Study to Understand the Critical Factors Affecting the Decision to Adopt Cloud Computing in Taiwan Hospital. International Journal of Information Management, 34 (1): 28 36.

Mansfield, E. 1968. Industrial Research and Technological Innovation. New York: Norton.

Merhi, M., & Bregu, K. 2020. Effective and Efficient Usage of Big-data Analytics in the Public Sector. Transforming Government: People, Process and Policy. Ahead-of-print. 10.1108/TG-08-2019-0083.

Morabito, V. 2015. Big Data and Analytics. Springer International Publishing, Heidelberg, New York, Dordrecht, London.

Motamarri, S., Akter, S., & Yanamandram, V. 2017. Does Big-data Analytics Influence Frontline Employees in Services Marketing?. Business Process Management.

Palmatier, R.W., & Martin, K.D. 2019. The Intelligent Marketer’s Guide to Data Privacy: The Impact of Big Data on Customer Trust. Springer.

Park, H., Ribie`re, V., & Schulte, W.D. 2004. Critical Attributes of Organizational Culture that Promote Knowledge Management Technology Implementation Success. Journal of Knowledge Management, 8 (3): 106-117.

Park, J.H., Kim, M.K., & Paik, J.H. 2015. The Factors of Technology, Organization and Environment Influencing the Adoption and Usage of Big Data in Korean Firms. 26th European Regional Conference of the International Telecommunications Society (ITS): "What Next for European Telecommunications?". Madrid, Spain, 24th-27th June 2015, International Telecommunications Society (ITS), Calgary.

Pérez-Martín, A., Pérez-Torregrosa, A., & Vaca, M. 2018. Big-data Techniques to Measure Credit Banking Risk in Home Equity Loan. Journal of Business Research, 89: 448-454.

Pramanick, S. 2013. Analytics in Banking Services. Available at: http://www.ibmbigdatahub.com/blog/ analytics-banking-services

Rana, S. 2019. Moving in the Realm of Big Data: Using Analytics in Management Research and Practices. SAGE Journal, 8 (1): 7-8.

Rogers, E.M. 2003. Diffusion of Innovations. (5th ed.). New York: Free Press.

Salleh, K.A., & Janczewski, L. 2016. Adoption of Big-data Solutions: A study on Its Security Determinants Using Sec-TOE Framework. CONF-IRM 2016 Proceedings. 66. https://aisel.aisnet.org/confirm 2016/66

Srivastava, U., & Gopalkrishnan, S. 2015. Impact of Big-data Analytics on the Banking Sector: Learning for Indian banks. Procedia Computer Science, 50: 643-652.

Sumbal, M.S., Tsui, E., Irfan, I., Shujahat, M., Mosconi, E., & Ali, M. 2019. Value Creation through Big-data Application Process Management: The Case of the Oil and Gas Industry. Journal of Knowledge Management, 23 (8): 1566-1585.

Sun, S., Cegielski, C.G., Jia, L., & Hall, D.J. 2018. Understanding the Factors Affecting the Organizational Adoption of Big Data. Journal of Computer Information Systems, 58 (3): 193-203.

Tornatzky, L.G., & Fleischer, M. 1990. The Processes of Technological Innovation. Lexington Books, Lexington.

Venkatesh, V., Morris, M.G., Davis, G.B., & Davis, F.D. 2003. User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 425-478.

Wamba, S.F., Gunasekaran, A., Akter, S., Ren, S.J.F., Dubey, R., & Childe, S.J. 2017. Big-data Analytics and Firm Performance: Effects of Dynamic Capabilities. Journal of Business Research, 70: 356-365.‏

التنزيلات

منشور

2022-04-06

كيفية الاقتباس

Al-Dmour, R. . ., Amin, E. A., Saad, N. . ., & Zaidan , H. . (2022). العوامل المتداخلة المؤثرة في تبني تطبيقات البيانات الضخمة: دراسة تطبيقية في الأردن. المجلة الأردنية في إدارة الأعمال, 18(2). استرجع في من https://jjournals.ju.edu.jo/index.php/JJBA/article/view/30

إصدار

القسم

Articles