Germination Performance of Wild Lupine Seeds (Lupinus varius L.) in Jordan Using Different Breaking Dormancy Treatments
DOI:
https://doi.org/10.35516/JJAS.3744Keywords:
Chemical scarification, germination rate, mechanical scarification, seed dormancy, radicle lengthAbstract
Wild lupine (Lupinus varius L.) is an annual plant native to the Mediterranean region. Only a few studies have investigated the germination performance of wild lupine seeds in the Mediterranean region and examined different effects of temperatures and multiple dormancy-breaking treatments, which could help crop breeders to develop varieties more resilient to climate change. This study was conducted to assess how different dormancy-breaking treatments, including hot water (80 °C), chemical scarification using sulfuric acid (H₂SO₄), and mechanical scarification, affect the germination rate and radicle length of wild lupine seeds when exposed to four controlled temperatures: 10, 14, 18, and 22 °C. A complete randomized design with three replications was used in this study. Mechanical scarification combined with a temperature of 22°C for 15 days was the most effective treatment for breaking the dormancy and resulted in the highest germination percentage (93.3%) and the highest radicle length (7.6 mm) for lupine seeds. In contrast, the lowest germination percentage (13.1-13.3%) was observed for H₂SO₄ and control wild lupine seeds (untreated) incubated at 10°C. In conclusion, mechanical scarification is an excellent method for breaking the seed dormancy of wild lupine seeds.
Downloads
References
Ačko, K. D., & Flajšman, M. (2023). Production and Utilization of Lupinus spp. IntechOpen. https://doi.org/10.5772/intechopen.110227
Ahmed, A. A., Abdel-Wahab, E. I., Ghareeb, Z. E., & Ashrei, A. A. (2023). Morphological characterization and agronomic traits of some lupine genotypes. Egyptian Journal of Agricultural Research, 101(2), 477-496. https://doi.org/10.21608/ejar.2023.193896.1349
Al-Ghzawi, A. L. A., Khalaf, Y. B., Al-Ajlouni, Z. I., AL-Quraan, N. A., Musallam, I., & Hani, N. B. (2018). The effect of supplemental irrigation on canopy temperature depression, chlorophyll content, and water use efficiency in three wheat (Triticum aestivum L. and T. durum Desf.) varieties grown in dry regions of Jordan. Agriculture, 8 (5), 67. https://doi.org/10.3390/agriculture8050067
Al-Ghzawi, A. L. A., Al-Ajlouni, Z. I., Sane, K. O. A., Bsoul, E. Y., Musallam, I., Khalaf, Y. B., Al-Tawaha, A., Aldwairi Y., & Al-Saqqar, H. (2019). Yield stability and adaptation of four spring barley (Hordeum vulgare L.) cultivars under rainfed conditions. Research on Crops, 20 (1), 10-18. https://doi.org/10.31830/2348-7542.2019.002
Al-Ghzawi, A. L. A., Al Khateeb, W., Rjoub, A., Al-Tawaha, A. R. M., Musallam, I., & Al Sane, K. O. (2019). Lead toxicity affects growth and biochemical content in various genotypes of barley (Hordeum vulgare L.). Bulgarian Journal of Agricultural Science, 25(1), 55-61.
Al-Eisawi D. (1982). List of Jordan vascular plants. Botanische Staatssammlung München,18, 79-182. Ammn, Jordan.
Asaadi, A. M., Heshmati, G., & Dadkhah, A. (2015). Effects of different treatments to stimulate seed germination of Salsola arbusculiformis Drob. Ecopersia, 3(3), 1077-1088. https://ecopersia.modares.ac.ir/article-24-9963-en.html
Bermúdez-Torres, K., Ferval, M., & Legal, L. (2015). Lupinus species in Central Mexico in the Era of Climate Change: adaptation, migration, or extinction?. Climate Change Impacts on High-Altitude Ecosystems, 215-228. https://doi.org/10.1007/978-3-319-12859-7_8
Cowling, W. A., Bevan, J. B., & Mario E. T. (1998). Lupin. Lupinus L. Promoting the conservation and use of underutilized and neglected crops. 23. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Institute of Plant Genetics and Crop Plant Research (IPGRI) via delle sette Chiese, (pp. 1-100). Rome, Italy. https://www.researchgate.net/publication/287391705_Lupin_Lupinus_spp_Promoting_the_conservation_and_use_of_underutilized_and_neglected_crops_23
Drummond, C. S., Eastwood, R. J., Miotto, S. T., & Hughes, C. E. (2012). Multiple continental radiations and correlates of diversification in Lupinus (Leguminosae): testing for key innovation with incomplete taxon sampling. Systematic Biology, 61(3), 443-460. https://doi.org/10.1093/sysbio/syr126
Geneve R.L. (2003). Impact of temperature on seed dormancy. HortScience, 38, 336-341. https://doi.org/10.21273/hortsci.38.3.336
Greipsson, S., & El-Mayas, H. (2003). Seed set, germination, and seedling establishment in Lupinus nootkatensis. Journal of New Seeds, 5 (4), 1-15. https://doi.org/10.1300/J153v05n04_01
Halvorson, J. J., Smith, J. L., & Kennedy, A. C. (2005). Lupine effects on soil development and function during early primary succession at Mount St. Helens. In Ecological responses to the 1980 eruption of Mount St. Helens (pp. 243-254). Springer. https://doi.org/10.1007/0-387-28150-9_17
Hatzilazarou, S., Pipinis, E., Kostas, S., Stagiopoulou, R., Gitsa, K., Dariotis, E., ... & Krigas, N. (2023). Influence of temperature on seed germination of five wild-growing Tulipa species of Greece associated with their ecological profiles: Implications for conservation and cultivation. Plants, 12 (7), 1574. https://doi.org/10.3390/ plants12071574
Hi̇looğlu, M., Sözen, E., Yücel, E., & Kandemir, A. (2018). Chemical applications, scarification and stratification effects on seed germination of rare endemic Verbascum calycosum Hausskn. ex Murb.(Scrophulariaceae). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46 (2), 376-380. https://doi.org/10.15835/nbha46210746
Jaganathan, G. K. (2022). Unravelling the paradox in physically dormant species: elucidating the onset of dormancy after dispersal and dormancy-cycling. Annals of Botany, 130 (2), 121-129. https://doi.org/10.1093/aob/mcac084
Jones, C., Jensen, S., & Stevens, M. (2010). An evaluation of seed scarification methods of four native Lupinus species. In: Pendleton, Rosemary; Meyer, Susan; Schultz, Bitsy, eds. Conference Proceedings: Seed Ecology III-The Third International Society for Seed Science Meeting on Seeds and the Environment-" Seeds and Change"; June 20-June 24, 2010; Salt Lake City, Utah, USA. Albuquerque, NM: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. p. 74-75. https://research.fs.usda.gov/treesearch/36964
Karaguzel, O. S. M. A. N., Cakmakci, S. A. D. I. K., Ortacesme, V. E. L. I., & Aydinoglu, B. I. L. A. L. (2004). Influence of seed coat treatments on germination and early seedling growth of Lupinus varius L. Pakistan Journal of Botany 36 (1), 65-74.
Knecht, K. T., Sanchez, P., & Kinder, D. H. (2020). Lupine Seeds (Lupinus spp.): history of use, use as an antihyperglycemic medicinal, and use as a food plant. In Nuts and Seeds in Health and Disease Prevention (pp. 393-402). Elsevier. https://doi.org/10.1016/b978-0-12-818553-7.00027-9
Knight, R. (2012). Linking Research and Marketing Opportunities for Pulses in the 21st Century: Proceedings of the Third International Food Legumes Research Conference (Vol. 34). Springer Science & Business Media. https://doi.org/10.1007/978-94-011-4385-1
Mahfouze, S. A., Mahfouze, H. A., Dalia M. F. Mubarak, D. M. F., & Esmail, R.M. (2015). Evaluation of Lupinus albus L. as a forage crop under rainfed conditions in Jordan, Jordan Journal of Biological Sciences, 11(1), 47-56.
Marrs RH, Owen LD, Roberts RD, Bradshaw AD. 1982. Tree Lupin (Lupinus arboreus Sims): an ideal nurse crop for land restoration and amenity plantings. Arboricultural Journal: The International Journal Of Urban Forestry 6, 161–174. https://doi.org/10.1080/03071375.1982.9746567
Navarro, A., Fos, S., Laguna, E., Durán, D., Rey, L., Rubio-Sanz, L., et al. (2014). Conservation of endangered Lupinus mariae-josephae in its natural habitat by inoculation with selected, native Bradyrhizobium strains. Plos One, 9:e102205. https://doi.org/10.1371/journal.pone.0102205
Ogtr. (2021). The Biology of Lupinus L. (lupin or lupine). Office of the Gene Technology Regulator, Australian Government, Canberra, P. 63.
Paim, L. P., Avrella, E. D., Horlle, J. C. A., Fior, C. S., Lazarotto, M., & Brunes, A. P. (2021). Response of Lupinus bracteolaris seeds to pre-germinative treatments and experimental conditions. Revista de Investigación Agraria y Ambiental. Bogotá, Colombia, 12 (2), 51-66. https://doi.org/10.22490/21456453.4278
Pantsyreva, H. V. (2019). Morphological and ecological-biological evaluation of the decorative species of the genus Lupinus L. Ukrainian Journal of Ecology, 9 (3), 74-77. https://doi.org/10.15421/2019_711
Planchuelo, A.M. (2020). Lupinus pilosus. The IUCN Red List of Threatened Species. https://dx.doi.org/10.2305/iucn.uk.2020-2.rlts.t19379279A100333517.en
Sfairi, Y., Lahcen, O., Al Feddy, M. N., & Abbad, A. (2012). Dormancy-breaking and salinity/water stress effects on seed germination of Atlas cypress, an endemic and threatened coniferous species in Morocco. African Journal of Biotechnology, 11(19), 4385-4390. https://doi.org/10.5897/ajb11.3271
Sholars, T. & Riggins, R. (2022). Lupinus. in Jepson Flora Project (Eds.) Jepson eFlora, Revision 11.
Swiecicki, W., Rybczynski, J., & Swiecicki, W. K. (2000). Domestication and genetics of the yellow lupin (Lupinus luteus L.) and the biotechnological improvement of lupins. Journal of Applied Genetics, 41(1), 11-34.
Wink, M., Meißner, C., & Witte, L. (1995). Patterns of quinolizidine alkaloids in 56 species of the genus Lupinus. Phytochemistry, 38(1), 139-153. https://doi.org/10.1016/0031-9422(95)91890-D
Taifour H. (2017). Jordan Plant Red List II. Royal Botanic Garden. p 966. Amman, Jordan
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jordan Journal of Agricultural Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2025-08-28
Published 2025-09-01