In Silico Antioxidant Activity of Six Volatile Constituents in Capsella bursa-pastoris

Authors

  • Mawadda Al-Shaar Laboratory of pharmacognosy, Faculty of Pharmacy, Damascus University, Syria
  • Huda Mando Laboratory of industrial chemistry, Faculty of pharmacy, Arab International University, Syria
  • Racha Alkhatib Laboratory of pharmacognosy, Faculty of Pharmacy, Damascus University, Syria

DOI:

https://doi.org/10.35516/jjps.v18i1.2537

Keywords:

Capsella bursa-pastoris, essential oil, antioxidant, molecular docking

Abstract

Capsella bursa-pastoris is a wild herb with high nutritional value that can be eaten raw or cooked in some countries. It is also used in the traditional medicine of many countries as an anti-bleeding agent and to relieve inflammation. This study aimed to identify the chemical composition of essential oil and assess the in silico antioxidant activity of six volatile constituents in Capsella bursa-pastoris grown in Syria. The essential oil was extracted and analyzed using gas chromatography-mass spectrometry (GC-MS). In addition, in silico pharmacokinetics and molecular docking of six volatile constituents (Phytone, Phytol, Farnesylacetone, Octa-3,5-dien-2-one, m-menthane, and beta-ionone) were performed on Xanthine oxidase (PDB ID: 1 FIQ). The results revealed the presence of thirty-eight compounds. The main compounds were hexahydrofarnesyl acetone (Phytone) at 20.2%, diacetyl-4,4',6,6'-tetramethoxy-2,2'-biphenyldiol at 8.46%, diisopropyl methylphosphonate at 6.45%, and beta-ionone at 5.24%. Farnesyl acetone and beta-ionone exhibited the highest binding affinity, ranging from -5.4 to -6.4 kcal/mol. The essential oil of Capsella bursa-pastoris is a potential source of antioxidants.

References

Grieve M. A Modern Herbal, Volume 1, Shepherd’s Purse, Capsella bursa-pastoris. Electronic version by Ed Greenwood, Arcata, California, USA; 1995. Available at: http://botanical.com/botanical/mgmh/s/shephe47.html.

Gruenwald J., Brendler T., Jaenicke C. Herbal Monograph in PDR for Herbal Medicines. 2nd ed. Medical Economics Company; 2000. p. 690-691.

Gümüşok S., Kirci D., Demirci B., Kiliç C.S. Essential Oil Composition of Capsella bursa-pastoris (L.) Medik. Aerial Parts. Turk. J. Pharm. Sci. 2023; 20(5):341-344. DOI: https://doi.org/10.4274/tjps.galenos.2022.15098

Al-Snafi A.E. The Chemical Constituents and Pharmacological Effects of Capsella bursa-pastoris - A Review. Int. J. Pharmacol. Toxicol. 2015; 5(2):76-81.

Kuroda K., Takagi K. Physiologically Active Substance in Capsella bursa-pastoris. Nature. 1968; 220:707-708. DOI: https://doi.org/10.1038/220707a0

Cha J.M., Kim D.H., Lee T.H., Subedi L., Kim S.Y., Lee K.R. Phytochemical Constituents of Capsella bursa-pastoris and Their Anti-Inflammatory Activity. Nat. Prod. Sci. 2018; 24(2):132-138. DOI: https://doi.org/10.20307/nps.2018.24.2.132

Park C.J., Park C.B., Hong S.S., Lee H.S., Lee S.Y., Kim S.C. Characterization and cDNA Cloning of Two Glycine- and Histidine-Rich Antimicrobial Peptides from the Roots of Shepherd’s Purse, Capsella bursa-pastoris. Plant Mol. Biol. 2000; 44(2):187-197. DOI: https://doi.org/10.1023/A:1006431320677

Grosso C., Vinholes J., Silva L.R., Pinho P.G.D., Gonçalves R.F., Valentão P., Andrade P.B. Chemical Composition and Biological Screening of Capsella bursa-pastoris. Rev. Bras. Farmacogn. 2011; 21(4):635-643. DOI: https://doi.org/10.1590/S0102-695X2011005000107

Riaz I., Bibi Y., Ahmad N., Nisa S., Qayyum A. Evaluation of Nutritional, Phytochemical, Antioxidant, and Cytotoxic Potential of Capsella bursa-pastoris, a Wild Vegetable from Potohar Region of Pakistan. Kuwait J. Sci. 2021; 48(3):1-11. DOI: https://doi.org/10.48129/kjs.v48i3.9562

Kuroda K, Akao M, Kanisawa M, Miyaki K. Inhibitory effect of Capsella bursa-pastoris extract on growth of Ehrlich solid tumor in mice. Cancer Research. 36(6), 1900-1903, (1976).

Protti Í.F., Rodrigues D.R., Fonseca S.K., Alves R.J., Oliveira R.B. de, Maltarollo V.G. Do Drug-Likeness Rules Apply to Oral Prodrugs? ChemMedChem. 2021; 16(9):1446–1456. DOI: https://doi.org/10.1002/cmdc.202000805

Daina A., Michielin O., Zoete V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness, and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017; 7:1-13. DOI: https://doi.org/10.1038/srep42717

Ayati A., Falahati M., Irannejad H., Emami S. Synthesis, In Vitro Antifungal Evaluation and In Silico Study of 3-Azolyl-4-Chromanone Phenylhydrazones. DARU J. Pharm. Sci. 2012; 46(20). DOI: https://doi.org/10.1186/2008-2231-20-46

Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997; 23(1-3):3-25. DOI: https://doi.org/10.1016/S0169-409X(96)00423-1

Ghose A.K., Viswanadhan V.N., J.J.W. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery: 1. A Qualitative and Quantitative Characterization of Known Drug Databases. J. Comb. Chem. 1999; 1(1):55-68. DOI: https://doi.org/10.1021/cc9800071

Veber D.F., Johnson S.R., Cheng H.Y., Smith B.R., Ward K.D.K. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002; 45(12):2615.

Kralj S., Jukić M. Molecular Filters in Medicinal Chemistry. Encyclopedia. 2023; 3(3):501-511.

Muegge I., Heald S.L., Brittelli D. Simple Selection Criteria for Drug-like Chemical Matter. J. Med. Chem. 2001; 44(12):1841-1846. DOI: https://doi.org/10.1021/jm015507e

Sahin S. A Single-Molecule with Multiple Investigations: Synthesis, Characterization, Computational Methods, Inhibitory Activity Against Alzheimer’s Disease, Toxicity, and ADME Studies. Comput. Biol. Med. 2022; 146:105514. DOI: https://doi.org/10.1016/j.compbiomed.2022.105514

Li N., Kulkarni P., Badrinarayanan A., Kefelegn A., Manoukian R., Li X., Prasad B., Karasu M., McCarty W.J., Knutson C.G. P-glycoprotein Substrate Assessment in Drug Discovery: Application of Modeling to Bridge Differential Protein Expression Across In Vitro Tools. J. Pharm. Sci. 2021; 110(1). DOI: https://doi.org/10.1016/j.xphs.2020.09.017

Beck T.C., Beck K.R., Morningstar J., Benjamin M.M., Norris R.A. Descriptors of Cytochrome Inhibitors and Useful Machine Learning-Based Methods for the Design of Safer Drugs. Pharmaceuticals. 2021; 15(5):472. DOI: https://doi.org/10.3390/ph14050472

Van Norman G.A. Limitations of Animal Studies for Predicting Toxicity in Clinical Trials. JACC Basic Transl. Sci. 2020; 5(4):387-397. DOI: https://doi.org/10.1016/j.jacbts.2020.03.010

Rim K-T. In Silico Prediction of Toxicity and Its Applications for Chemicals at Work. Toxicol. Environ. Health Sci. 2020; 12:192-202. DOI: https://doi.org/10.1007/s13530-020-00056-4

Ridings J.E., Barratt M.D., Cary R., Earnshaw C.G., Eggington C.E., Ellis M.K., et al. Computer Prediction of Possible Toxic Action from Chemical Structure: An Update on the DEREK System. Toxicology. 1996; 106(1-3):267-279. DOI: https://doi.org/10.1016/0300-483X(95)03190-Q

Enoch S.J., Cronin M.T.D. A Review of the Electrophilic Reaction Chemistry Involved in Covalent DNA Binding. Crit. Rev. Toxicol. 2010; 40(8):728-748. DOI: https://doi.org/10.3109/10408444.2010.494175

Taghizadeh M.S., Taghizadeh M.S., Moghadam A., Afsharifar A. Experimental, Molecular Docking and Molecular Dynamic Studies of Natural Products Targeting Overexpressed Receptors in Breast Cancer. PLoS One. 2022; 17(5): e0267961. DOI: https://doi.org/10.1371/journal.pone.0267961

Asiamah I., Obiri S.A., Tamekloe W., Armah F.A., Borquaye L.S. Applications of Molecular Docking in Natural Products-Based Drug Discovery. Sci. African. 2023; 20: e01593. DOI: https://doi.org/10.1016/j.sciaf.2023.e01593

Vieira T.F. Comparing AutoDock and Vina in Ligand/Decoy Discrimination for Virtual Screening. Appl. Sci. 2019; 9(21):4535. DOI: https://doi.org/10.3390/app9214538

Trott O., Olson A.J. AutoDock Vina: Improving the Speed and Accuracy. J. Comb. Chem. 2010; 31(2):455–461. DOI: https://doi.org/10.1002/jcc.21334

Gurivelli P., K.S. Pharmacognostic, Phytochemical Evaluation, and Antioxidant Activity of the Leaves of Grewia Billamellata Gangeb (Tiliaceae). Bull. Pharm. Sci. Assiut Univ. 2023; 46(2):817-833. DOI: https://doi.org/10.21608/bfsa.2023.327333

A.M.F., L.K., B.S.N., K.F., S.S., H.V.J., et al. Expanding the Scope of the Protein–Ligand Interaction Profiler to DNA and RNA. Nucleic Acids Res. 2021; 49:530–554. DOI: https://doi.org/10.1093/nar/gkab294

Nopsiri W., Chansakaow S., Putiyanan S., Natakankitkul S., Nantachit K., Khantawa B., Santiarworn D. Chemical Constituents and Antibacterial Activity of Volatile Oils of Combretum latifolium Bl. and C. quadrangulare Kurz Leaves. CMUJ Nat. Sci. 2015; 14:245-256. DOI: https://doi.org/10.12982/CMUJNS.2015.0086

National Center for Biotechnology Information. PubChem Compound Summary for CID 10408, 6,10,14-Trimethylpentadecan-2-one. PubChem. https://pubchem.ncbi.nlm.nih.gov/compound/6_10_14-Trimethylpentadecan-2-one. Accessed Nov. 2, 2020.

Heidor R., Vargas-Mendez E., Moreno F.S. Epigenetic Aspects of Hepatocellular Carcinoma Chemoprevention. In Epigenetics of Cancer Prevention. Academic Press, 2019: 231-249. DOI: https://doi.org/10.1016/B978-0-12-812494-9.00011-1

National Center for Biotechnology Information. PubChem Compound Summary for CID 638014, beta-Ionone. PubChem. https://pubchem.ncbi.nlm.nih.gov/compound/beta-Ionone. Accessed Nov. 2, 2020.

National Center for Biotechnology Information. PubChem Compound Summary for CID 1711945, Farnesylacetone. PubChem. https://pubchem.ncbi.nlm.nih.gov/compound/Farnesylacetone. Accessed Nov. 2, 2020.

Gao Y.X., Zhou X.J. Chemical Constituents of Essential Oil from Leaves of Capsella bursa-pastoris. Resour. Dev. Market. 2009; 25:1070-1071.

Choi H.S., Kang E.J., Kim K.H. Analyses of Essential Oil and Headspace Compositions of Capsella bursa-pastoris Medicus by SDE and SPME Methods. Korean J. Food Preserv. 2006; 13(1):108-114.

Liu Y., Li Y.H., Ning W., Zhao X., Wu J., Li X.L. GC-MS Analysis of Essential Oil from Capsella bursa-pastoris. Lishizhen Med. Mater. Med. Res. 2009; 5:1050-1051.

Miyazawa M., Uetake A., Kamoka H. The Constituents of the Essential Oils from Capsella bursa-pastoris Medik. Yakugaku Zasshi. 1979; 99(10):1041-1043. DOI: https://doi.org/10.1248/yakushi1947.99.10_1041

Lee M.S., Choi H.S. Volatile Flavor Components of Capsella bursa-pastoris as Influenced by Drying Methods. Korean J. Food Sci. Technol. 1996; 28(5):814-821.

Kralj S., Jukič M., Bren U. Molecular Filters in Medicinal Chemistry. Encyclopedia. 2023; 3(2):501–511. DOI: https://doi.org/10.3390/encyclopedia3020035

Veber D.F., Johnson S., Cheng H-Y., Smith B., Ward K., Kopple K. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002; 45:2615–2623. DOI: https://doi.org/10.1021/jm020017n

Egan W., Merz K., Baldwin J. Prediction of Drug Absorption Using Multivariate Statistics. J. Med. Chem. 2000; 43:3967–3877. DOI: https://doi.org/10.1021/jm000292e

Halder S.K., Elma F. In Silico Identification of Novel Chemical Compounds with Anti-TB Potential for the Inhibition of InhA and EthR from Mycobacterium tuberculosis. bioRxiv. 2020; 12(4):411967. DOI: https://doi.org/10.1101/2020.12.04.411967

Sjögren E., Thörn H., Tannergren C. In Silico Modeling of Gastrointestinal Drug Absorption: Predictive Performance of Three Physiologically Based Absorption Models. Mol. Pharm. 2016; 13(6):1763–1778. DOI: https://doi.org/10.1021/acs.molpharmaceut.5b00861

Mando H., Allous I. Hierarchical Virtual Screening of SARS-CoV-2 Main Protease Potential Inhibitors: Similarity Search, Pharmacophore Modeling, and Molecular Docking Study. Anti-Infective Agents. 2024. DOI: https://doi.org/10.2174/0122113525280410240106122715

Mostafa E.M., El-Ghorab A.H., Ghoneim M.M., Ebrahim H.A., Abulfaraj M., Abdelgawad M.A., et al. Cytotoxic and Antioxidant Potential of Launaea mucronata Forssk Essential Oil Growing in Northern Saudi Arabia. Molecules. 2023; 28(20):7025. DOI: https://doi.org/10.3390/molecules28207025

Asra F., Thathapudi D., Ajra F., Katari S., Dumala N. In Silico Pharmacokinetic and Pharmacodynamic Screening Methods of Phytol; An Antitubercular Lead Discovery Study. In: Murahari M., Nalluri B.N., Chakravarthi G., editors. Current Trends in Drug Discovery, Development and Delivery (CTD4-2022). Royal Society of Chemistry Books; 2023:822. DOI: https://doi.org/10.1039/9781837671090-00185

Yang H., Sun L., Li W., Liu G., Tang Y. In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts. Front. Chem. 2018; 6(30). DOI: https://doi.org/10.3389/fchem.2018.00030

Moussa N., Mando H. Novel and Predictive QSAR Model and Molecular Docking: New Natural Sulfonamides of Potential Concern against SARS-CoV-2. Anti-Infective Agents. 2023; 21(5). DOI: https://doi.org/10.2174/2211352521666230717115823

Chen X., Guan W., Li Y., Zhang J., Cai L. Xanthine Oxidase Inhibitory Peptides from Larimichthys polyactis: Characterization and In Vitro/In Silico Evidence. Foods. 2023; 12(5):982. DOI: https://doi.org/10.3390/foods12050982

Hille R. Xanthine Oxidase—A Personal History. Molecules. 2023; 28(4):1921. DOI: https://doi.org/10.3390/molecules28041921

Alkhatib R. Chemical Composition of Essential Oils, Total Phenols, and Antioxidant Activity of Achillea fragrantissima and A. santolina Grown in Syria. Jordan Journal of Pharmaceutical Sciences. 2024; 17(3). DOI: https://doi.org/10.35516/jjps.v17i3.2389

Alkhoury R., Alkhatib R. Rumex conglomeratus Murr. Grown Wild in Syria: Phytochemical Analysis and In Vitro Activities of Aerial Parts and Rhizomes Extracts. Jordan Journal of Pharmaceutical Sciences. 2024; 17(4). DOI: https://doi.org/10.35516/jjps.v17i4.2448

Al-Halaseh L., Issa R., Said R., Al-Suhaimat R. Antioxidant Activity, Phytochemical Screening, and LC/MS Characterization of Polyphenol Content of Jordanian Habitat of Pennisetum setaceum Aqueous Leaf Extract. Jordan Journal of Pharmaceutical Sciences. 2024; 17(4). DOI: https://doi.org/10.35516/jjps.v17i4.2442

Downloads

Published

2025-03-25

How to Cite

Al-Shaar, M., Mando, H., & Alkhatib, R. (2025). In Silico Antioxidant Activity of Six Volatile Constituents in Capsella bursa-pastoris. Jordan Journal of Pharmaceutical Sciences, 18(1), 230–244. https://doi.org/10.35516/jjps.v18i1.2537

Issue

Section

Articles