Wound healing Potential of Fucoidan Extracted Microwavically from Sargassum wightii Possibly Mediated by Collagen-1 Expression in Vero Cell Line
DOI:
https://doi.org/10.35516/jjps.v18i3.2589Keywords:
Sargassum wightii, Fucoidan, macromolecule, Wound healing, SRB assay, Viro cells, collagen-1 expressionAbstract
Background: Fucoidan, a natural macromolecule extracted from Sargassum wightii, has shown promise in various therapeutic areas, including anti-tumor, antioxidant, antithrombotic, and wound healing applications. This study explores the wound healing potential of fucoidan derived from Sargassum wightii collected from the Gulf of Mannar, Tamil Nadu, India.
Aims and Objectives: This research aims to assess the effectiveness of fucoidan extracted via microwave-assisted extraction (MAE) in promoting wound healing in Vero cells, a line of African green monkey kidney cells. The study also investigates the impact of fucoidan on collagen-1 expression, a critical protein involved in the wound healing process.
Materials and Methods: Fucoidan was extracted using MAE, and its cytotoxicity was evaluated using the Sulforhodamine B (SRB) Assay. The wound healing efficacy was tested through a scratch assay, measuring the closure of wounds over 24 and 48 hours.
Results: The SRB Assay demonstrated that fucoidan did not exhibit cytotoxicity to Vero cells, with an IC50 value of 61.30 µM. The scratch assay revealed wound closure of 46.15% at 24 hours and 76.9% at 48 hours, compared to 50% and 81.25% in the control group. Fucoidan treatment significantly increased collagen-1 expression, with 77.92% of cells showing elevated levels of this crucial protein.
Conclusions: This study confirms the in-vitro wound healing capabilities of fucoidan extracted from Sargassum wightii. These findings support the potential of fucoidan as a natural agent for wound healing and restoration.
References
Olsthoorn SEM, Wang X, Tillema B, et al. Brown Seaweed Food Supplementation: Effects on Allergy and Inflammation and Its Consequences. Nutrients. 2021; 13(8): 2613. doi:10.3390/nu13082613 DOI: https://doi.org/10.3390/nu13082613
Jesumani V, Du H, Aslam M, Pei P, Huang N. Potential Use of Seaweed Bioactive Compounds in Skincare-A Review. Mar Drugs. 2019; 17(12): 688.
doi:10.3390/md17120688 DOI: https://doi.org/10.3390/md17120688
Shah MD, Venmathi Maran BA, Shaleh SRM, Zuldin WH, Gnanaraj C, Yong YS. Therapeutic Potential and Nutraceutical Profiling of North Bornean Seaweeds: A Review. Mar Drugs. 2022; 20(2): 101.
doi:10.3390/md20020101 DOI: https://doi.org/10.3390/md20020101
Zhang R, Zhang X, Tang Y, Mao J. Composition, isolation, purification and biological activities of Sargassum fusiforme polysaccharides: A review. Carbohydr Polym. 2020; 228: 115381. doi:10.1016/j.carbpol.2019.115381 DOI: https://doi.org/10.1016/j.carbpol.2019.115381
Hwang J, Yadav D, Lee PC, Jin JO. Immunomodulatory effects of polysaccharides from marine algae for treating cancer, infectious disease, and inflammation. Phytother Res. 2022; 36(2): 761-777. doi:10.1002/ptr.7348 DOI: https://doi.org/10.1002/ptr.7348
Brown ES, Allsopp PJ, Magee PJ, et al. Seaweed and human health. Nutrition Review. 2014; 72(3): 205-216. doi:10.1111/nure.12091 DOI: https://doi.org/10.1111/nure.12091
Ale MT, Maruyama H, Tamauchi H. Fucoidan from Sargassum sp. and its biological activities. In: Food Hydrocolloids. Woodhead Publishing. 2011; 207-212. doi:10.1016/B978-0-85709-080-8.50015-3.
Sarker SD, Nahar L. An introduction to natural products isolation. Methods Mol Biol. 2012; 864: 1-25. doi:10.1007/978-1-61779-624-1_1 DOI: https://doi.org/10.1007/978-1-61779-624-1_1
Melgar B, Dias MI, Barros L, Ferreira ICFR, Rodriguez-Lopez AD, Garcia-Castello EM. Ultrasound and Microwave Assisted Extraction of Opuntia Fruit Peels Biocompounds: Optimization and Comparison Using RSM-CCD. Molecules. 2019; 24(19): 3618. doi:10.3390/molecules24193618 DOI: https://doi.org/10.3390/molecules24193618
Bucar F, Wube A, Schmid M. Natural product isolation--how to get from biological material to pure compounds. Nat Prod Rep. 2013; 30(4): 525-545. doi:10.1039/c3np20106f DOI: https://doi.org/10.1039/c3np20106f
Cummins PM, Rochfort KD, O'Connor BF. Ion-Exchange Chromatography: Basic Principles and Application. Methods Mol Biol. 2017; 1485: 209-223. doi:10.1007/978-1-4939-6412-3_11 DOI: https://doi.org/10.1007/978-1-4939-6412-3_11
Dayananda B, Owen S, Kolobaric A, Chapman J, Cozzolino D. Pre-processing Applied to Instrumental Data in Analytical Chemistry: A Brief Review of the Methods and Examples. Crit Rev Anal Chem. 2023; 1-9. doi:10.1080/10408347.2023.2199864 DOI: https://doi.org/10.1080/10408347.2023.2199864
Mäntele W, Deniz E. UV-VIS absorption spectroscopy: Lambert-Beer reloaded. Spectrochim Acta A Mol Biomol Spectrosc. 2017; 173: 965-968.
doi:10.1016/j.saa.2016.09.037 DOI: https://doi.org/10.1016/j.saa.2016.09.037
Griffiths PR. Fourier transform infrared spectrometry. Science. 1983; 222(4621): 297-302.
doi:10.1126/science.6623077 DOI: https://doi.org/10.1126/science.6623077
Harris RK, Becker ED, Cabral de Menezes SM, Goodfellow R, Granger P. NMR Nomenclature: Nuclear Spin Properties and Conventions for Chemical Shifts. IUPAC Recommendations 2001. Solid State Nucl Magn Reson. 2002; 22(4): 458-483. doi:10.1006/snmr.2002. DOI: https://doi.org/10.1006/snmr.2002.0063
Rubakhin SS, Sweedler JV. A mass spectrometry primer for mass spectrometry imaging. Methods Mol Biol. 2010; 656: 21-49. doi:10.1007/978-1-60761-746-4_2 DOI: https://doi.org/10.1007/978-1-60761-746-4_2
Shakil MS, Rana Z, Hanif M, Rosengren RJ. Key considerations when using the sulforhodamine B assay for screening novel anticancer agents. Anticancer Drugs. 2022; 33(1): 6-10. doi:10.1097/CAD.0000000000001131 DOI: https://doi.org/10.1097/CAD.0000000000001131
Adan A, Kiraz Y, Baran Y. Cell Proliferation and Cytotoxicity Assays. Curr Pharm Biotechnol. 2016; 17(14): 1213-1221.
doi:10.2174/1389201017666160808160513 DOI: https://doi.org/10.2174/1389201017666160808160513
Ammerman NC, Beier-Sexton M, Azad AF. Laboratory maintenance of Rickettsia rickettsii. Curr Protoc Microbiol. 2008; Chapter 3: Unit-3A.5. doi:10.1002/9780471729259.mc03a05s11 DOI: https://doi.org/10.1002/9780471729259.mc03a05s11
Montomoli E, Khadang B, Piccirella S, et al. Cell culture-derived influenza vaccines from Vero cells: a new horizon for vaccine production. Expert Rev Vaccines. 2012; 11(5): 587-594. doi:10.1586/erv.12.24 DOI: https://doi.org/10.1586/erv.12.24
Van Tonder A, Joubert AM, Cromarty AD. Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Res Notes. 2015; 8: 47. doi:10.1186/s13104-015-1000-8 DOI: https://doi.org/10.1186/s13104-015-1000-8
Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007; 2(2): 329-333. doi:10.1038/nprot.2007.30 DOI: https://doi.org/10.1038/nprot.2007.30
Yuan Y, Macquarrie D. Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity. Carbohydr Polym. 2015; 129: 101-107. doi:10.1016/j.carbpol.2015.04.057 DOI: https://doi.org/10.1016/j.carbpol.2015.04.057
Mussatto SI. Microwave-Assisted Extraction of Fucoidan from Marine Algae. Methods Mol Biol. 2015; 1308: 151-157. doi:10.1007/978-1-4939-2684-8_9 DOI: https://doi.org/10.1007/978-1-4939-2684-8_9
Palanisamy S, Vinosha M, Marudhupandi T, Rajasekar P, Prabhu NM. Isolation of fucoidan from Sargassum polycystum brown algae: Structural characterization, in vitro antioxidant and anticancer activity. Int J Biol Macromol. 2017; 102: 405-412.
doi:10.1016/j.ijbiomac.2017.03.182
Palanisamy S, Vinosha M, Marudhupandi T, Rajasekar P, Prabhu NM. Isolation of fucoidan from Sargassum polycystum brown algae: Structural characterization, in vitro antioxidant and anticancer activity. Int J Biol Macromol. 2017; 102: 405-412.
doi:10.1016/j.ijbiomac.2017.03.182 DOI: https://doi.org/10.1016/j.ijbiomac.2017.03.182
Leal D, et al. FT-IR spectra of alginic acid block fractions in three species of brown seaweeds. Carbohydr Res. 2008; 343: 308-316. doi:10.1016/j.carres.2007.10.016. DOI: https://doi.org/10.1016/j.carres.2007.10.016
Koh HSA, Lu J, Zhou W. Structure characterization and antioxidant activity of fucoidan isolated from Undaria pinnatifida grown in New Zealand. Carbohydr Polym. 2019; 212: 178-185. doi:10.1016/j.carbpol.2019.02.040 DOI: https://doi.org/10.1016/j.carbpol.2019.02.040
Al Monla R, Dassouki Z, Sari-Chmayssem N, Mawlawi H, Gali-Muhtasib H. Fucoidan and Alginate from the Brown Algae Colpomenia sinuosa and Their Combination with Vitamin C Trigger Apoptosis in Colon Cancer. Molecules. 2022; 27(2): 358.
doi:10.3390/molecules27020358 DOI: https://doi.org/10.3390/molecules27020358
Sichert A, et al. Ion-exchange purification and structural characterization of five sulfated fucoidans from brown algae. Glycobiology. 2021; 31(4): 352-357.
doi:10.1093/glycob/cwaa064. DOI: https://doi.org/10.1093/glycob/cwaa064
Liu X, Xi X, Jia A, et al. A fucoidan from Sargassum fusiforme with novel structure and its regulatory effects on intestinal microbiota in high-fat diet-fed mice. Food Chem. 2021; 358: 129908.
doi:10.1016/j.foodchem.2021.129908 DOI: https://doi.org/10.1016/j.foodchem.2021.129908
Thanh TTT, et al. Structure of Fucoidan from Brown Seaweed Turbinaria ornata as Studied by Electrospray Ionization Mass Spectrometry (ESIMS) and Small Angle X-ray Scattering (SAXS) Techniques. Mar Drugs. 2013; 11: 2431-2443. doi:10.3390/md1107243. DOI: https://doi.org/10.3390/md11072431
Anastyuk SD, Shevchenko NM, Gorbach VI. Fucoidan Analysis by Tandem MALDI-TOF and ESI Mass Spectrometry. Methods Mol Biol. 2015; 1308: 299-312. doi:10.1007/978-1-4939-2684-8_19 DOI: https://doi.org/10.1007/978-1-4939-2684-8_19
Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Protocol. 2006; 1(3): 1112-1116. doi:10.1038/nprot.2006.179 DOI: https://doi.org/10.1038/nprot.2006.179
Voigt W. Sulforhodamine B assay and chemosensitivity. Methods Mol Med. 2005; 110: 39-48. DOI: https://doi.org/10.1385/1-59259-869-2:039
doi:10.1385/1-59259-869-2: 039
Grada A, Mervis J, Falanga V. Research Techniques Made Simple: Analysis of Collective Cell Migration Using the Wound Healing Assay. J Invest Dermatol. 2017; 137: e11-e16. doi:10.1016/j.jid.2016.11.020. DOI: https://doi.org/10.1016/j.jid.2016.11.020
Bolla SR, Kumar NV, Lavanya G, Babu B. In vitro wound healing potency of methanolic leaf extract of Aristolochia saccata is possibly mediated by its stimulatory effect on collagen-1 expression. Heliyon. 2019; 5(3): e01648. doi:10.1016/j.heliyon.2019.e01648.
Bobadilla AVP, Wheeler MW, Lenhart JS, et al. In vitro cell migration quantification method for scratch assays. J R Soc Interface. 2019; 16(152): 20180709.
doi:10.1098/rsif.2018.0709. DOI: https://doi.org/10.1098/rsif.2018.0709
Oono T, Specks U, Eckes B, et al. Expression of type VI collagen mRNA during wound healing. J Invest Dermatol. 1993; 100(3): 329-334. doi:10.1111/1523-1747.ep12470022. DOI: https://doi.org/10.1111/1523-1747.ep12470022
Bolla SR, Mohammed Al-Subaie A, Yousuf Al-Jindan R, et al. In vitro wound healing potency of methanolic leaf extract of Aristolochia saccata is possibly mediated by its stimulatory effect on collagen-1 expression. Heliyon. 2019; 5(5): e01648. Published 2019 May 20. doi:10.1016/j.heliyon.2019.e01648 DOI: https://doi.org/10.1016/j.heliyon.2019.e01648
Maria S.S. and Wada M.L.F. Cytochemical analysis of Vero cells on type I collagen gels in long-term culture. In Vitro Cell Dev Biol Anim. 1997; 33(10):748-750. DOI: https://doi.org/10.1007/s11626-997-0152-9
Kumbhar S., Khairate R., Bhatia M., Choudhari P. and Gaikwad V. Evaluation of curcumin-loaded chitosan nanoparticles for wound healing activity. ADMET DMPK. 2023; 11(4):601-613. DOI: https://doi.org/10.5599/admet.1897
Dandannavar V., Jana P.B., Dhawale L., Joseph J., Reddy S.A., Pillai A. and Priya V.V. Wound-healing potential of methanolic extract of Rhaphidophora korthalsii leaves possibly mediated by collagen and fibronectin expression in L929 cell line. Natl J Physiol Pharm Pharmacol. 2019; 9(1). DOI: https://doi.org/10.5455/njppp.2019.9.0623404072019
Sardi V.F., Astika A., Jalius I.M. and Ismed F. Quantification of mangiferin from the bioactive fraction of mango leaves (Mangifera indica L.) and evaluation of wound-healing potential. Jordan J Pharm Sci. 2023; 16(3):595-606. DOI: https://doi.org/10.35516/jjps.v16i3.652
Rahhal B.M., Jaradat N., Issa L., Hussein F., Amara G., Gazawi L., Alheen S., Jbara W., Baransi Z. and Keadan Z. Unveiling the phytochemical profiling, hypolipidemic, hypoglycemic and antioxidant effects of different extracts from Lavandula stoechas L. (French lavender) grown in Palestine. Jordan J Pharm Sci. 2025; 18(2):509-523. DOI: https://doi.org/10.35516/jjps.v18i2.2611
Ayash H., Hamitoğlu M., Davaran S. and Aydin A. A review on the application of electrospun herbal extract-loaded metallized nanofiber composites as wound healing promoter: fabrication, efficacy, and safety. Jordan J Pharm Sci. 2025; 18(2):496-508. DOI: https://doi.org/10.35516/jjps.v18i2.2506







