التطورات في مجال العلاج باستخدام الأدوية المحضرة باستخدام العلاج النانوي في علاج مرض السرطان: مراجعة علمية

المؤلفون

  • Wael Abu Dayyih قسم الكيمياء الصيدلانية، كلية الصيدلة، جامعة مؤتة، الكرك، الأردن.
  • Mohammad Hailat قسم الصيدلة، كلية الصيدلة، جامعة الزيتونة الأردنية، عمان، الأردن.
  • Shahd Albtoush قسم الكيمياء الصيدلانية، كلية الصيدلة، جامعة مؤتة، الكرك، الأردن.
  • Eslam Albtoush قسم الكيمياء الصيدلانية، كلية الصيدلة، جامعة مؤتة، الكرك، الأردن.
  • Alaa Abu Dayah قسم الصيدلة، جامعة عمان الأهلية، الأردن.
  • Ibrahim Alabbadi قسم الصيدلة الحيوية والصيدلة السريرية، الجامعة الأردنية، عمان، الأردن.
  • Mohammed F. Hamad قسم العلوم الطبية الأساسية، كلية الطب، جامعة البلقاء التطبيقية، السلط، الأردن.

DOI:

https://doi.org/10.35516/jjps.v17i3.2384

الكلمات المفتاحية:

الجسيمات النانوية، العلاج المضاد للسرطان، المواد النانوية القائمة على الكربون، الجسيمات النانوية القائمة على المعادن، القائمة على الدهون، البوليمرية

الملخص

العلاجات النانوية للسرطان، والمميزة بتكوينات حجمها النانومترية، تهدف إلى تحسين توزيع الأدوية المضادة للسرطان في الجسم، وتقليل التأثيرات الجانبية (والغير مرغوبة نتيجة استهداف انسجة غير سرطانية)، وتقليل السمية، وزيادة تراكم هذه العلاجات في المواقع الهدف، وتحسين الكفاءة العامة للعلاجات. لقد تم تطوير العديد من العلاجات النانوية لتحسين فعالية وسلامة العلاجات المضادة للسرطان التقليدية. تشمل هذه التطورات تكوينات تحتوي على أنابيب نانوية من الكربون، وجزيئات من الألماس نانوية الحجم، وجسيمات نانوية تستجيب للإنزيمات بالتزويد المنتظم من الدواء، و”الديندرايمرات" كحاملات للدواء على شكل جسيمات نانوية، وأنظمة حمل الدواء بجسيمات النانو النقطية لتوصيل الدواء بدقة متناهية، وجسيمات الدهون الصلبة النانوية، وجسيمات البوليمر المصممة لتوصيل الدواء بشكل مستهدف. وعلاوة على ذلك، تمت مناقشة التكنولوجيا النانوية في علاج السرطان باستخدام العلاج الجيني. على الرغم من هذه التقدمات، فإن الطبيعة المعقدة لمواد الحمل والتكامل الوظيفي تحمل العديد من الصعوبات في تحضير أنظمة ايصال السالفة الذكرهذه للتطبيق السريري.التكنولوجيا النانوية، بميزاتها الفريدة على مستوى النانو، تقدم إمكانيات جديدة لتطوير علاجات السرطان مع زيادة الكفاءة والسلامة. وبالرغم من أن عددًا قليلاً من العلاجات النانوية حصلت على الموافقة السريرية، إلا أن هناك استخدامات مثيرة للدهشة للتكنولوجيا النانوية في المستقبل. تتمتع الجسيمات النانوية بقدرات فريدة في قدراتها على النقل، والخصائص البيولوجية، والبصرية، والمغناطيسية، والكهربائية، والحرارية الخاصة بها بسبب صغر حجمها. وهذا يؤدي إلى نسب سطح كبيرة مقارنة بالحجم، مما يسمح بدمجها مع مكونات داعمة مختلفة بالإضافة إلى المواد الدوائية الفعالة. تساعد هذه الخصائص الجزيئات النانوية في عمليات التحلل، والحماية من التحلل، وتأخير إطلاق العلاجات المقصود، وتجنب الاستجابة المناعية، وتعزيز اختراق الأنسجة، والتصوير، والتوزيع المستهدف، والتفعيل المستند. وخلاصة القول، فان مستقبل العلاجات النانوية  يعد واعدًا بإدخال منصات مبتكرة في علاجات السرطان المختلفة. تؤكد الأبحاث التي تم عرضها وتلخيصها على إمكانية أن تحدث الجسيمات النانوية ثورة في علاجات مكافحة السرطان، مع تعزيز النهج العلاجي العام.

المراجع

Siegel, R.L., Miller, K.D., Wagle, N.S., Jemal, A. Cancer Statistics, 2023. CA Cancer J Clin. 2023; 73: 17–48, doi:10.3322/caac.21763. DOI: https://doi.org/10.3322/caac.21763

Sharma, P., Jhawat, V., Mathur, P., Dutt, R. Innovation in Cancer Therapeutics and Regulatory Perspectives. Medical Oncology 2022; 39: 76. DOI: https://doi.org/10.1007/s12032-022-01677-0

Ahmad, A. Precision Medicine and Pharmacogenetics: Stratification and Improved Outcome in Non-Small Cell Lung Cancer. Jordan Journal of Pharmaceutical Sciences 2023; 16: 441–441, doi:10.35516/JJPS.V16I2.1474. DOI: https://doi.org/10.35516/jjps.v16i2.1474

Gennari, A., André, F., Barrios, C.H., Cortés, J., de Azambuja, E., DeMichele, A., Dent, R., Fenlon, D., Gligorov, J., Hurvitz, S.A., et al. ESMO Clinical Practice Guideline for the Diagnosis, Staging and Treatment of Patients with Metastatic Breast Cancer. Annals of Oncology 2021; 32: 1475–1495, doi:10.1016/j.annonc.2021.09.019. DOI: https://doi.org/10.1016/j.annonc.2021.09.019

Caputo, D., Quagliarini, E., Pozzi, D., Caracciolo, G. Nanotechnology Meets Oncology: A Perspective on the Role of the Personalized Nanoparticle-Protein Corona in the Development of Technologies for Pancreatic Cancer Detection. Int J Mol Sci. 2022; 23: 23. DOI: https://doi.org/10.3390/ijms231810591

Chehelgerdi, M., Chehelgerdi, M., Allela, O.Q.B., Pecho, R.D.C., Jayasankar, N., Rao, D.P., Thamaraikani, T., Vasanthan, M., Viktor, P., Lakshmaiya, N., et al. Progressing Nanotechnology to Improve Targeted Cancer Treatment: Overcoming Hurdles in Its Clinical Implementation. Mol Cancer. 2023; 22: 1–103. DOI: https://doi.org/10.1186/s12943-023-01865-0

Abuarqoub, D., Mahmoud, N.N., Zaza, R., Abu-Dahab, R., Khalil, E.A., Sabbah, D.A. The in Vitro Immunomodulatory Effects of Gold Nanocomplex on THP-1-Derived Macrophages. J Immunol Res. 2022; 2022: doi:10.1155/2022/6031776. DOI: https://doi.org/10.1155/2022/6031776

Wang, M.D., Shin, D.M., Simons, J.W., Nie, S. Nanotechnology for Targeted Cancer Therapy. Expert Rev Anticancer Ther. 2007; 7: 833–837, doi:10.1586/14737140.7.6.833. DOI: https://doi.org/10.1586/14737140.7.6.833

Hajipour, M.J., Safavi-Sohi, R., Sharifi, S., Mahmoud, N., Ashkarran, A.A., Voke, E., Serpooshan, V., Ramezankhani, M., Milani, A.S., Landry, M.P., et al. An Overview of Nanoparticle Protein Corona Literature. Small. 2023; 19. DOI: https://doi.org/10.1002/smll.202301838

Dessale, M., Mengistu, G., Mengist, H.M. Nanotechnology: A Promising Approach for Cancer Diagnosis, Therapeutics and Theragnosis. Int J Nanomedicine. 2022; 17: 3735–3749. DOI: https://doi.org/10.2147/IJN.S378074

Alshogran, O.Y., Al-Shdefat, R., Hailat, M. Simple and Rapid Quantification of Ribociclib in Rat Plasma by Protein Precipitation and LC-MS/MS: An Application to Pharmacokinetics of Ribociclib Nanoparticles in Rats. Journal of Mass Spectrometry. 2023; 58: e4984, doi:10.1002/jms.4984. DOI: https://doi.org/10.1002/jms.4984

Lisik, K., Krokosz, A. Application of Carbon Nanoparticles in Oncology and Regenerative Medicine. Int J Mol Sci. 2021; 22: 22. DOI: https://doi.org/10.3390/ijms22158341

Bagheri, B., Surwase, S.S., Lee, S.S., Park, H., Faraji Rad, Z., Trevaskis, N.L., Kim, Y.C. Carbon-Based Nanostructures for Cancer Therapy and Drug Delivery Applications. J Mater Chem B. 2022; 10: 9944–9967. DOI: https://doi.org/10.1039/D2TB01741E

Afreen, S., Omar, R.A., Talreja, N., Chauhan, D., Ashfaq, M. Carbon-Based Nanostructured Materials for Energy and Environmental Remediation Applications. In Nanotechnology in the Life Sciences; Springer Science and Business Media B.V., 2018; pp. 369–392. DOI: https://doi.org/10.1007/978-3-030-02369-0_17

Mohan, H., Fagan, A., Giordani, S. Carbon Nanomaterials (CNMs) in Cancer Therapy: A Database of CNM-Based Nanocarrier Systems. Pharmaceutics. 2023; 15: 1545. DOI: https://doi.org/10.3390/pharmaceutics15051545

Sarkar, S., Gurjarpadhye, A.A., Rylander, C.G., Nichole Rylander, M. Optical Properties of Breast Tumor Phantoms Containing Carbon Nanotubes and Nanohorns. J Biomed Opt. 2011; 16: 051304, doi:10.1117/1.3574762. DOI: https://doi.org/10.1117/1.3574762

Saleem, J., Wang, L., Chen, C. Carbon-Based Nanomaterials for Cancer Therapy via Targeting Tumor Microenvironment. Adv Healthc Mater. 2018; 7: 1800525. DOI: https://doi.org/10.1002/adhm.201800525

Zare, H., Ahmadi, S., Ghasemi, A., Ghanbari, M., Rabiee, N., Bagherzadeh, M., Karimi, M., Webster, T.J., Hamblin, M.R., Mostafavi, E. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. Int J Nanomedicine. 2021; 16: 1681–1706. DOI: https://doi.org/10.2147/IJN.S299448

Singh, R., Kumar, S. Cancer Targeting and Diagnosis: Recent Trends with Carbon Nanotubes. Nanomaterials. 2022; 12: doi:10.3390/NANO12132283. DOI: https://doi.org/10.3390/nano12132283

Rathinavel, S., Priyadharshini, K., Panda, D. A Review on Carbon Nanotube: An Overview of Synthesis, Properties, Functionalization, Characterization, and the Application. Materials Science and Engineering: B. 2021; 268: 115095. DOI: https://doi.org/10.1016/j.mseb.2021.115095

Anzar, N., Hasan, R., Tyagi, M., Yadav, N., Narang, J. Carbon Nanotube - A Review on Synthesis, Properties and Plethora of Applications in the Field of Biomedical Science. Sensors International. 2020; 1: 100003. DOI: https://doi.org/10.1016/j.sintl.2020.100003

Kumar, S., Rani, R., Dilbaghi, N., Tankeshwar, K., Kim, K.H. Carbon Nanotubes: A Novel Material for Multifaceted Applications in Human Healthcare. Chem Soc Rev. 2017; 46: 158–196. DOI: https://doi.org/10.1039/C6CS00517A

Tang, L., Li, J., Pan, T., Yin, Y., Mei, Y., Xiao, Q., Wang, R., Yan, Z., Wang, W. Versatile Carbon Nanoplatforms for Cancer Treatment and Diagnosis: Strategies, Applications and Future Perspectives. Theranostics. 2022; 12: 2290–2321. DOI: https://doi.org/10.7150/thno.69628

Debnath, S.K., Srivastava, R. Drug Delivery With Carbon-Based Nanomaterials as Versatile Nanocarriers: Progress and Prospects. Frontiers in Nanotechnology. 2021; 3: 644564. DOI: https://doi.org/10.3389/fnano.2021.644564

Murata, K., Kaneko, K., Kokai, F., Takahashi, K., Yudasaka, M., Iijima, S. Pore Structure of Single-Wall Carbon Nanohorn Aggregates. Chem Phys Lett. 2000; 331: 14–20, doi:10.1016/S0009-2614(00)01152-0. DOI: https://doi.org/10.1016/S0009-2614(00)01152-0

Garaj, S., Thien-Nga, L., Gaal, R., Forró, L., Takahashi, K., Kokai, F., Yudasaka, M., Iijima, S., Iijima, S., Iijima, S. Electronic Properties of Carbon Nanohorns Studied by ESR. Phys Rev B Condens Matter Mater Phys. 2000; 62: 17115–17119, doi:10.1103/PhysRevB.62.17115. DOI: https://doi.org/10.1103/PhysRevB.62.17115

Moreno-Lanceta, A., Medrano-Bosch, M., Melgar-Lesmes, P. Single-Walled Carbon Nanohorns as Promising Nanotube-Derived Delivery Systems to Treat Cancer. Pharmaceutics. 2020; 12: 1–21.

Li, D., Zhang, Y., Xu, J., Yoshino, F., Xu, H., Chen, X., Zhao, L. Surface-Engineered Carbon Nanohorns as a Theranostic Nanodevice for Photoacoustic Imaging and Effective Radiochemotherapy of Cancer. Carbon N Y. 2021; 180: 185–196, doi:10.1016/j.carbon.2021.04.073. DOI: https://doi.org/10.1016/j.carbon.2021.04.073

Pan, F., Khan, M., Ragab, A.H., Javed, E., Alsalmah, H.A., Khan, I., Lei, T., Hussain, A., Mohamed, A., Zada, A., et al. Recent Advances in the Structure and Biomedical Applications of Nanodiamonds and Their Future Perspectives. Mater Des. 2023; 233: 112179, doi:10.1016/j.matdes.2023.112179. DOI: https://doi.org/10.1016/j.matdes.2023.112179

Mondal, A., Nayak, A.K., Chakraborty, P., Banerjee, S., Nandy, B.C. Natural Polymeric Nanobiocomposites for Anti-Cancer Drug Delivery Therapeutics: A Recent Update. Pharmaceutics. 2023; 15: 2064. DOI: https://doi.org/10.3390/pharmaceutics15082064

Khan, M.B., Khan, Z.H. Nanodiamonds: Synthesis and Applications. In Proceedings of the Advanced Structured Materials; Springer Science and Business Media Deutschland GmbH, 2018; Vol. 84, pp. 1–26. DOI: https://doi.org/10.1007/978-981-10-6214-8_1

Gowtham, P., Harini, K., Pallavi, P., Girigoswami, K., Girigoswami, A. Nano-Fluorophores as Enhanced Diagnostic Tools to Improve Cellular Imaging. Nanomed J. 2022; 9: 281–295.

Singh, M., Mazumder, B. Recent Advancements in Nanodiamond Mediated Brain Targeted Drug Delivery and Bioimaging of Brain Ailments: A Holistic Review. Pharm Nanotechnol. 2021; 10: 42–55, doi:10.2174/2211738510666211222111938. DOI: https://doi.org/10.2174/2211738510666211222111938

Zupančič, D., Veranič, P. Nanodiamonds as Possible Tools for Improved Management of Bladder Cancer and Bacterial Cystitis. Int J Mol Sci. 2022; 23. DOI: https://doi.org/10.3390/ijms23158183

Bianco, A., Kostarelos, K., Prato, M. Opportunities and Challenges of Carbon-Based Nanomaterials. Chem Rev. 2008; 108: 321–341.

Ji, S.R., Liu, C., Zhang, B., Yang, F., Xu, J., Long, J., Jin, C., Fu, D.L., Ni, Q.X., Yu, X.J. Carbon Nanotubes in Cancer Diagnosis and Therapy. Biochim Biophys Acta Rev Cancer. 2010; 1806: 29–35, doi:10.1016/j.bbcan.2010.02.004. DOI: https://doi.org/10.1016/j.bbcan.2010.02.004

Sanginario, A., Miccoli, B., Demarchi, D. Carbon Nanotubes as an Effective Opportunity for Cancer Diagnosis and Treatment. Biosensors (Basel). 2017; 7: 1–23, doi:10.3390/bios7010009. DOI: https://doi.org/10.3390/bios7010009

Son, K.H., Hong, J.H., Lee, J.W. Carbon Nanotubes as Cancer Therapeutic Carriers and Mediators. Int J Nanomedicine. 2016; 11: 5163–5185, doi:10.2147/IJN.S112660. DOI: https://doi.org/10.2147/IJN.S112660

Sheikhpour, M., Golbabaie, A., Kasaeian, A. Carbon Nanotubes: A Review of Novel Strategies for Cancer Diagnosis and Treatment. Materials Science and Engineering C. 2017; 76: 1289–1304, doi:10.1016/j.msec.2017.02.132. DOI: https://doi.org/10.1016/j.msec.2017.02.132

Moreno-Lanceta, A., Medrano-Bosch, M., Melgar-Lesmes, P. Single-Walled Carbon Nanohorns as Promising Nanotube-Derived Delivery Systems to Treat Cancer. Pharmaceutics. 2020; 12: 1–21, doi:10.3390/pharmaceutics12090850. DOI: https://doi.org/10.3390/pharmaceutics12090850

Curcio, M., Cirillo, G., Saletta, F., Michniewicz, F., Nicoletta, F.P., Vittorio, O., Hampel, S., Iemma, F. Carbon Nanohorns as Effective Nanotherapeutics in Cancer Therapy. C (Basel). 2020; 7: 3, doi:10.3390/c7010003. DOI: https://doi.org/10.3390/c7010003

Chechetka, S.A., Zhang, M., Yudasaka, M., Miyako, E. Physicochemically Functionalized Carbon Nanohorns for Multi-Dimensional Cancer Elimination. Carbon N Y. 2016; 97: 45–53, doi:10.1016/j.carbon.2015.05.077. DOI: https://doi.org/10.1016/j.carbon.2015.05.077

Lai, H., Stenzel, M.H., Xiao, P. Surface Engineering and Applications of Nanodiamonds in Cancer Treatment and Imaging. International Materials Reviews. 2020; 65: 189–225, doi:10.1080/09506608.2019.1622202. DOI: https://doi.org/10.1080/09506608.2019.1622202

Gupta, C., Prakash, D., Gupta, S. Cancer Treatment with Nano-Diamonds. Frontiers in Bioscience - Scholar. 2017; 9: 62–70, doi:10.2741/S473. DOI: https://doi.org/10.2741/s473

Jabir, N.R., Tabrez, S., Ashraf, G.M., Shakil, S., Damanhouri, G.A., Kamal, M.A. Nanotechnology-Based Approaches in Anticancer Research. Int J Nanomedicine. 2012; 7: 4391–4408, doi:10.2147/IJN.S33838. DOI: https://doi.org/10.2147/IJN.S33838

van der Laan, K., Hasani, M., Zheng, T., Schirhagl, R. Nanodiamonds for In Vivo Applications. Small. 2018; 14, doi:10.1002/smll.201703838. DOI: https://doi.org/10.1002/smll.201703838

Jamkhande, P.G., Ghule, N.W., Bamer, A.H., Kalaskar, M.G. Metal Nanoparticles Synthesis: An Overview on Methods of Preparation, Advantages and Disadvantages, and Applications. J Drug Deliv Sci Technol. 2019; 53: 101174. DOI: https://doi.org/10.1016/j.jddst.2019.101174

Phan, H.T., Haes, A.J. What Does Nanoparticle Stability Mean? Journal of Physical Chemistry C. 2019; 123: 16495–16507, doi:10.1021/acs.jpcc.9b00913. DOI: https://doi.org/10.1021/acs.jpcc.9b00913

Yaqoob, A.A., Ahmad, H., Parveen, T., Ahmad, A., Oves, M., Ismail, I.M.I., Qari, H.A., Umar, K., Mohamad Ibrahim, M.N. Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review. Front Chem. 2020; 8: 341. DOI: https://doi.org/10.3389/fchem.2020.00341

Kumar, S., Shukla, M.K., Sharma, A.K., Jayaprakash, G.K., Tonk, R.K., Chellappan, D.K., Singh, S.K., Dua, K., Ahmed, F., Bhattacharyya, S., et al. Metal‐based Nanomaterials and Nanocomposites as Promising Frontier in Cancer Chemotherapy. MedComm (Beijing). 2023; 4, doi:10.1002/MCO2.253. DOI: https://doi.org/10.1002/mco2.253

Altammar, K.A. A Review on Nanoparticles: Characteristics, Synthesis, Applications, and Challenges. Front Microbiol. 2023; 14. DOI: https://doi.org/10.3389/fmicb.2023.1155622

Sztandera, K., Gorzkiewicz, M., Klajnert-Maculewicz, B. Gold Nanoparticles in Cancer Treatment. Mol Pharm. 2019; 16: 1–23, doi:10.1021/acs.molpharmaceut.8b00810. DOI: https://doi.org/10.1021/acs.molpharmaceut.8b00810

Peng, J., Liang, X., Calderon, L. Progress in Research on Gold Nanoparticles in Cancer Management. Medicine (United States). 2019; 98, doi:10.1097/MD.0000000000015311. DOI: https://doi.org/10.1097/MD.0000000000015311

Haume, K., Rosa, S., Grellet, S., Śmiałek, M.A., Butterworth, K.T., Solov’yov, A.V., Prise, K.M., Golding, J., Mason, N.J. Gold Nanoparticles for Cancer Radiotherapy: A Review. Cancer Nanotechnol. 2016; 7, doi:10.1186/s12645-016-0021-x. DOI: https://doi.org/10.1186/s12645-016-0021-x

Slepička, P., Kasálková, N.S., Siegel, J., Kolská, Z., Švorčík, V. Methods of Gold and Silver Nanoparticles Preparation. Materials. 2020; 13, doi:10.3390/ma13010001. DOI: https://doi.org/10.3390/ma13010001

Sattari, M. 乳鼠心肌提取 {HHS} {Public} {Access}. Journal of Pediatrics. 2013; 176: 139–148, doi:10.1002/adhm.201901058.Magnetic.

Li, X., Li, W., Wang, M., Liao, Z. Magnetic Nanoparticles for Cancer Theranostics: Advances and Prospects. Journal of Controlled Release. 2021; 335: 437–448, doi:10.1016/j.jconrel.2021.05.042. DOI: https://doi.org/10.1016/j.jconrel.2021.05.042

Jose, J., Kumar, R., Harilal, S., Mathew, G.E., Parambi, D.G.T., Prabhu, A., Uddin, M.S., Aleya, L., Kim, H., Mathew, B. Magnetic Nanoparticles for Hyperthermia in Cancer Treatment: An Emerging Tool. Environmental Science and Pollution Research. 2020; 27: 19214–19225, doi:10.1007/s11356-019-07231-2. DOI: https://doi.org/10.1007/s11356-019-07231-2

Yadollahpour, A. Magnetic Nanoparticles in Medicine: A Review of Synthesis Methods and Important Characteristics. Oriental Journal of Chemistry. 2015; 31: 271–277, doi:10.13005/ojc/31.Special-Issue1.33. DOI: https://doi.org/10.13005/ojc/31.Special-Issue1.33

Meadows, J. Vehicle Design. Vehicle Design. 2017; 65: 703–718, doi:10.4324/9781315543147. DOI: https://doi.org/10.4324/9781315543147

Deli-, D., Sukhanova, A., Nabiev, I. Accepted Manuscript.

Matea, C.T., Mocan, T., Tabaran, F., Pop, T., Mosteanu, O., Puia, C., Iancu, C., Mocan, L. Quantum Dots in Imaging, Drug Delivery and Sensor Applications. Int J Nanomedicine. 2017; 12: 5421–5431,

doi:10.2147/IJN.S138624. DOI: https://doi.org/10.2147/IJN.S138624

Qi, L., Gao, X. Emerging Application of Quantum Dots for Drug Delivery and Therapy. Expert Opin Drug Deliv. 2008; 5: 263–267, doi:10.1517/17425247.5.3.263. DOI: https://doi.org/10.1517/17425247.5.3.263

Tandale, P., Choudhary, N., Singh, J., Sharma, A., Shukla, A., Sriram, P., Suttee, A. Fluorescent Quantum Dots: An Insight on Synthesis and Potential Biological Application as Drug Carrier in Cancer. Biochem Biophys Rep. 2021; 26: 100962. DOI: https://doi.org/10.1016/j.bbrep.2021.100962

Obaid, R.Z., Abu-Huwaij, R., Hamed, R. Development and Characterization of Anticancer Model Drug Conjugated to Biosynthesized Zinc Oxide Nanoparticles Loaded into Different Topical Skin Formulations. Jordan Journal of Pharmaceutical Sciences. 2023; 16: 486, doi:10.35516/jjps.v16i2.1545. DOI: https://doi.org/10.35516/jjps.v16i2.1545

Mahmoud, N.N., Abu-Dahab, R., Hamadneh, L.A., Abuarqoub, D., Jafar, H., Khalil, E.A. Insights into the Cellular Uptake, Cytotoxicity, and Cellular Death Modality of Phospholipid-Coated Gold Nanorods toward Breast Cancer Cell Lines. Mol Pharm. 2019; 16: 4149–4164, doi:10.1021/acs.molpharmaceut.9b00470. DOI: https://doi.org/10.1021/acs.molpharmaceut.9b00470

Bloise, N., Strada, S., Dacarro, G., Visai, L. Gold Nanoparticles Contact with Cancer Cell: A Brief Update. Int J Mol Sci. 2022; 23. DOI: https://doi.org/10.3390/ijms23147683

Bharadwaj, K.K., Rabha, B., Pati, S., Sarkar, T., Choudhury, B.K., Barman, A., Bhattacharjya, D., Srivastava, A., Baishya, D., Edinur, H.A., et al. Green Synthesis of Gold Nanoparticles Using Plant Extracts as Beneficial Prospect for Cancer Theranostics. Molecules. 2021; 26. DOI: https://doi.org/10.3390/molecules26216389

Kovács, D., Igaz, N., Gopisetty, M.K., Kiricsi, M. Cancer Therapy by Silver Nanoparticles: Fiction or Reality? Int J Mol Sci. 2022; 23. DOI: https://doi.org/10.3390/ijms23020839

Malaikolundhan, H., Mookkan, G., Krishnamoorthi, G., Matheswaran, N., Alsawalha, M., Veeraraghavan, V.P., Krishna Mohan, S., Di, A. Anticarcinogenic Effect of Gold Nanoparticles Synthesized from Albizia Lebbeck on HCT-116 Colon Cancer Cell Lines. Artif Cells Nanomed Biotechnol. 2020; 48: 1206–1213, doi:10.1080/21691401.2020.1814313. DOI: https://doi.org/10.1080/21691401.2020.1814313

Wang, Z., Dong, J., Zhao, Q., Ying, Y., Zhang, L., Zou, J., Zhao, S., Wang, J., Zhao, Y., Jiang, S. Gold Nanoparticle-Mediated Delivery of Paclitaxel and Nucleic Acids for Cancer Therapy (Review). Mol Med Rep. 2020; 22: 4475–4484, doi:10.3892/mmr.2020.11580. DOI: https://doi.org/10.3892/mmr.2020.11580

Kulkarni, S., Kumar, S., Acharya, S. Gold Nanoparticles in Cancer Therapeutics and Diagnostics. Cureus. 2022; 14, doi:10.7759/cureus.30096. DOI: https://doi.org/10.7759/cureus.30096

Issa, B., Obaidat, I.M., Albiss, B.A., Haik, Y. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications. Int J Mol Sci. 2013; 14: 21266–21305. DOI: https://doi.org/10.3390/ijms141121266

Díez, A.G., Rincón-Iglesias, M., Lanceros-Méndez, S., Reguera, J., Lizundia, E. Multicomponent Magnetic Nanoparticle Engineering: The Role of Structure-Property Relationship in Advanced Applications. Mater Today Chem. 2022; 26: 101220. DOI: https://doi.org/10.1016/j.mtchem.2022.101220

Mittal, A., Roy, I., Gandhi, S. Magnetic Nanoparticles: An Overview for Biomedical Applications. Magnetochemistry. 2022; 8: 107. DOI: https://doi.org/10.3390/magnetochemistry8090107

Rarokar, N., Yadav, S., Saoji, S., Bramhe, P., Agade, R., Gurav, S., Khedekar, P., Subramaniyan, V., Wong, L.S., Kumarasamy, V. Magnetic Nanosystem a Tool for Targeted Delivery and Diagnostic Application: Current Challenges and Recent Advancement. Int J Pharm X. 2024; 7: 100231, doi:10.1016/J.IJPX.2024.100231. DOI: https://doi.org/10.1016/j.ijpx.2024.100231

Shabatina, T.I., Vernaya, O.I., Shabatin, V.P., Melnikov, M.Y. Magnetic Nanoparticles for Biomedical Purposes: Modern Trends and Prospects. Magnetochemistry. 2020; 6: 1–18. DOI: https://doi.org/10.3390/magnetochemistry6030030

Li, J., Liu, F., Shao, Q., Min, Y., Costa, M., Yeow, E.K.L., Xing, B. Enzyme-Responsive Cell-Penetrating Peptide Conjugated Mesoporous Silica Quantum Dot Nanocarriers for Controlled Release of Nucleus-Targeted Drug Molecules and Real-Time Intracellular Fluorescence Imaging of Tumor Cells. Adv Healthc Mater. 2014; 3: 1230–1239, doi:10.1002/adhm.201300613. DOI: https://doi.org/10.1002/adhm.201300613

Rezaei, A., Hashemi, E. A Pseudohomogeneous Nanocarrier Based on Carbon Quantum Dots Decorated with Arginine as an Efficient Gene Delivery Vehicle. Sci Rep. 2021; 11: 1–10, doi:10.1038/s41598-021-93153-4. DOI: https://doi.org/10.1038/s41598-021-93153-4

García-Pinel, B., Porras-Alcalá, C., Ortega-Rodríguez, A., Sarabia, F., Prados, J., Melguizo, C., López-Romero, J.M. Lipid-Based Nanoparticles: Application and Recent Advances in Cancer Treatment. Nanomaterials. 2019; 9: 1–23, doi:10.3390/nano9040638. DOI: https://doi.org/10.3390/nano9040638

Al-Shdefat, R., Hailat, M., Alshogran, O.Y., Abu Dayyih, W., Gardouh, A., Al Meanazel, O. Ribociclib Hybrid Lipid–Polymer Nanoparticle Preparation and Characterization for Cancer Treatment. Polymers (Basel). 2023; 15: 2844, doi:10.3390/polym15132844. DOI: https://doi.org/10.3390/polym15132844

Samimi, S., Maghsoudnia, N., Eftekhari, R.B., Dorkoosh, F. Lipid-Based Nanoparticles for Drug Delivery Systems; Elsevier Inc., 2018; ISBN 9780128140321. DOI: https://doi.org/10.1016/B978-0-12-814031-4.00003-9

Puri, A., Loomis, K., Smith, B., Lee, J.H., Yavlovich, A., Heldman, E., Blumenthal, R. Lipid-Based Nanoparticles as Pharmaceutical Drug Carriers: From Concepts to Clinic. Crit Rev Ther Drug Carrier Syst. 2009; 26: 523–580, doi:10.1615/CritRevTherDrugCarrierSyst.v26.i6.10. DOI: https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i6.10

Miller, A.D. Lipid-Based Nanoparticles in Cancer Diagnosis and Therapy. J Drug Deliv. 2013; 2013: 1–9, doi:10.1155/2013/165981. DOI: https://doi.org/10.1155/2013/165981

Sheoran, S., Arora, S., Samsonraj, R., Govindaiah, P., Vuree, S. Lipid-Based Nanoparticles for Treatment of Cancer. Heliyon. 2022; 8: e09403, doi:10.1016/j.heliyon.2022.e09403. DOI: https://doi.org/10.1016/j.heliyon.2022.e09403

Malam, Y., Loizidou, M., Seifalian, A.M. Liposomes and Nanoparticles: Nanosized Vehicles for Drug Delivery in Cancer. Trends Pharmacol Sci. 2009; 30: 592–599, doi:10.1016/j.tips.2009.08.004. DOI: https://doi.org/10.1016/j.tips.2009.08.004

Alavi, M., Hamidi, M. Passive and Active Targeting in Cancer Therapy by Liposomes and Lipid Nanoparticles. Drug Metab Pers Ther. 2019; 34: 1–8, doi:10.1515/dmpt-2018-0032. DOI: https://doi.org/10.1515/dmpt-2018-0032

Lombardo, D., Kiselev, M.A. Methods of Liposomes Preparation: Formation and Control Factors of Versatile Nanocarriers for Biomedical and Nanomedicine Application. Pharmaceutics. 2022; 14, doi:10.3390/pharmaceutics14030543. DOI: https://doi.org/10.3390/pharmaceutics14030543

Kutlu, H.M. Importance of Solid Lipid Nanoparticles in Cancer Therapy. 2017.

Bayón-Cordero, L., Alkorta, I., Arana, L. Application of Solid Lipid Nanoparticles to Improve the Efficiency of Anticancer Drugs. Nanomaterials. 2019; 9, doi:10.3390/nano9030474. DOI: https://doi.org/10.3390/nano9030474

Paliwal, R., Paliwal, S.R., Kenwat, R., Kurmi, B. Das, Sahu, M.K. Solid Lipid Nanoparticles: A Review on Recent Perspectives and Patents. Expert Opin Ther Pat. 2020; 30: 179–194, doi:10.1080/13543776.2020.1720649. DOI: https://doi.org/10.1080/13543776.2020.1720649

Sharma, A., Baldi, A. Nanostructured Lipid Carriers: A Review Journal. J Dev Drugs. 2018; 7: 1–12, doi:10.4172/2329-6631.1000187.

Gordillo-Galeano, A., Mora-Huertas, C.E. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: A Review Emphasizing on Particle Structure and Drug Release. Eur J Pharm Biopharm. 2018; 133: 285–308, doi:10.1016/j.ejpb.2018.10.017. DOI: https://doi.org/10.1016/j.ejpb.2018.10.017

Lade, S., Shah, N., Burle, S. Nanostructured Lipid Carriers: A Vital Drug Carrier for Migraine Treatment. Res J Pharm Technol. 2022; 15: 3309–3316, doi:10.52711/0974-360X.2022.00554. DOI: https://doi.org/10.52711/0974-360X.2022.00554

Abu Dayyih, W., Layth, R., Hailat, M., Alkhawaja, B., Al Tamimi, L., Zakaraya, Z., Aburumman, A., Al Dmour, N., Saadh, M.J., Al-Matubsi, H., et al. Effect of Date Molasses on Levetiracetam Pharmacokinetics in Healthy Rats. Sci Rep. 2023; 13: 758, doi:10.1038/s41598-023-28074-5. DOI: https://doi.org/10.1038/s41598-023-28074-5

Zarrabi, A., Zarepour, A., Khosravi, A., Alimohammadi, Z., Thakur, V.K. Synthesis of Curcumin Loaded Smart pH-Responsive Stealth Liposome as a Novel Nanocarrier for Cancer Treatment. Fibers. 2021; 9: 1–17, doi:10.3390/fib9030019. DOI: https://doi.org/10.3390/fib9030019

Ghafari, M., Haghiralsadat, F., Khanamani Falahati-pour, S., Zavar Reza, J. Development of a Novel Liposomal Nanoparticle Formulation of Cisplatin to Breast Cancer Therapy. J Cell Biochem. 2020; 121: 3584–3592, doi:10.1002/jcb.29651. DOI: https://doi.org/10.1002/jcb.29651

Abu Amara, H.M. Solid Lipid Nanoparticles as Indomethacin Carriers for Topical Use (2): DSC Analysis, Drug Release and Rheological Properties. Jordan J Pharm Sci. 2014; 7: 97–119, doi:10.12816/0026797. DOI: https://doi.org/10.12816/0026797

Arafat, M., Sakkal, M., Beiram, R., AbuRuz, S. Nanomedicines: Emerging Platforms in Smart Chemotherapy Treatment—A Recent Review. Pharmaceuticals. 2024; 17: 315,

doi:10.3390/ph17030315. DOI: https://doi.org/10.3390/ph17030315

Qureshi, O.S., Kim, H.S., Zeb, A., Choi, J.S., Kim, H.S., Kwon, J.E., Kim, M.S., Kang, J.H., Ryou, C., Park, J.S., et al. Sustained Release Docetaxel-Incorporated Lipid Nanoparticles with Improved Pharmacokinetics for Oral and Parenteral Administration. J Microencapsul. 2017; 34: 250–261, doi:10.1080/02652048.2017.1337247. DOI: https://doi.org/10.1080/02652048.2017.1337247

Smith, T., Affram, K., Nottingham, E.L., Han, B., Amissah, F., Krishnan, S., Trevino, J., Agyare, E. Application of Smart Solid Lipid Nanoparticles to Enhance the Efficacy of 5-Fluorouracil in the Treatment of Colorectal Cancer. Sci Rep. 2020; 10: 1–14, doi:10.1038/s41598-020-73218-6. DOI: https://doi.org/10.1038/s41598-020-73218-6

Fang, C.-L., Al-Suwayeh, A., Fang, J.-Y. Nanostructured Lipid Carriers (NLCs) for Drug Delivery and Targeting. Recent Pat Nanotechnol. 2012; 7: 41–55, doi:10.2174/18722105130105. DOI: https://doi.org/10.2174/18722105130105

Sun, M., Nie, S., Pan, X., Zhang, R., Fan, Z., Wang, S. Quercetin-Nanostructured Lipid Carriers: Characteristics and Anti-Breast Cancer Activities in Vitro. Colloids Surf B Biointerfaces. 2014; 113: 15–24, doi:10.1016/j.colsurfb.2013.08.032. DOI: https://doi.org/10.1016/j.colsurfb.2013.08.032

Ferreira, M., Chaves, L.L., Lima, S.A.C., Reis, S. Optimization of Nanostructured Lipid Carriers Loaded with Methotrexate: A Tool for Inflammatory and Cancer Therapy. Int J Pharm. 2015; 492: 65–72, doi:10.1016/j.ijpharm.2015.07.013. DOI: https://doi.org/10.1016/j.ijpharm.2015.07.013

Parveen, S., Sahoo, S.K. Polymeric Nanoparticles for Cancer Therapy. J Drug Target. 2008; 16: 108–123, doi:10.1080/10611860701794353. DOI: https://doi.org/10.1080/10611860701794353

Shukla, R., Handa, M., Lokesh, S.B., Ruwali, M., Kohli, K., Kesharwani, P. Conclusion and Future Prospective of Polymeric Nanoparticles for Cancer Therapy. Elsevier Inc. 2019; ISBN 9780128169636. DOI: https://doi.org/10.1016/B978-0-12-816963-6.00018-2

Masood, F. Polymeric Nanoparticles for Targeted Drug Delivery System for Cancer Therapy. Materials Science and Engineering C. 2016. DOI: https://doi.org/10.1016/j.msec.2015.11.067

El-Say, K.M., El-Sawy, H.S. Polymeric Nanoparticles: Promising Platform for Drug Delivery. Cancers (Basel). 2017; 528: 675–691, doi:10.1016/j.ijpharm.2017.06.052. DOI: https://doi.org/10.1016/j.ijpharm.2017.06.052

Odegaard, J.I., Chawla, A. Design of Polymeric Nanoparticles for Biomedical Delivery Applications. Chem Soc Rev. 2008; 23: 1–7, doi:10.1039/c2cs15327k. DOI: https://doi.org/10.1039/c2cs15327k

Singh, J., Jain, K., Mehra, N.K., Jain, N.K. Dendrimers in Anticancer Drug Delivery: Mechanism of Interaction of Drug and Dendrimers. Artif Cells Nanomed Biotechnol. 2016; 44: 1626–1634,

doi:10.3109/21691401.2015.1129625. DOI: https://doi.org/10.3109/21691401.2015.1129625

Wang, H., Huang, Q., Chang, H., Xiao, J., Cheng, Y. Stimuli-Responsive Dendrimers in Drug Delivery. Biomater Sci. 2016; 4: 375–390,

doi:10.1039/c5bm00532a. DOI: https://doi.org/10.1039/C5BM00532A

Huang, D., Wu, D. Biodegradable Dendrimers for Drug Delivery. Materials Science & Engineering C. 2018. DOI: https://doi.org/10.1016/j.msec.2018.03.002

Nikzamir, M., Hanifehpour, Y., Akbarzadeh, A., Panahi, Y. Applications of Dendrimers in Nanomedicine and Drug Delivery: A Review. J Inorg Organomet Polym Mater. 2021; 31: 2246–2261, doi:10.1007/s10904-021-01925-2. DOI: https://doi.org/10.1007/s10904-021-01925-2

Jin, G.W., Rejinold, N.S., Choy, J.H. Multifunctional Polymeric Micelles for Cancer Therapy. Polymers (Basel). 2022; 14: 1–19, doi:10.3390/polym14224839. DOI: https://doi.org/10.3390/polym14224839

Zhou, Q., Zhang, L., Yang, T.H., Wu, H. Stimuli-Responsive Polymeric Micelles for Drug Delivery and Cancer Therapy. Int J Nanomedicine. 2018; 13: 2921–2942, doi:10.2147/IJN.S158696. DOI: https://doi.org/10.2147/IJN.S158696

Ghosh, B., Biswas, S. Polymeric Micelles in Cancer Therapy: State of the Art. Journal of Controlled Release. 2021; 332: 127–147, doi:10.1016/j.jconrel.2021.02.016. DOI: https://doi.org/10.1016/j.jconrel.2021.02.016

Biswas, S., Kumari, P., Lakhani, P.M., Ghosh, B. Recent Advances in Polymeric Micelles for Anti-Cancer Drug Delivery. Elsevier B.V. 2016; Vol. 83; ISBN 0406630399. DOI: https://doi.org/10.1016/j.ejps.2015.12.031

Mourya, V.K., Inamdar, N., Nawale, R.B., Kulthe, S.S. Polymeric Micelles: General Considerations and Their Applications. Indian Journal of Pharmaceutical Education and Research. 2011; 45: 128–138.

Karlsson, J., Vaughan, H.J., Green, J.J. Biodegradable Polymeric Nanoparticles for Therapeutic Cancer Treatments. Annu Rev Chem Biomol Eng. 2018; 9: 105–127, doi:10.1146/annurev-chembioeng-060817-084055. DOI: https://doi.org/10.1146/annurev-chembioeng-060817-084055

Begines, B., Ortiz, T., Pérez-Aranda, M., Martínez, G., Merinero, M., Argüelles-Arias, F., Alcudia, A. Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. Nanomaterials. 2020; 10: 1–41, doi:10.3390/nano10071403.

Niza, E., Ocaña, A., Castro-Osma, J.A., Bravo, I., Alonso-Moreno, C. Polyester Polymeric Nanoparticles as Platforms in the Development of Novel Nanomedicines for Cancer Treatment. Cancers (Basel). 2021; 13. DOI: https://doi.org/10.3390/cancers13143387

Begines, B., Ortiz, T., Pérez-Aranda, M., Martínez, G., Merinero, M., Argüelles-Arias, F., Alcudia, A. Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. Nanomaterials. 2020; 10: 1–41. DOI: https://doi.org/10.3390/nano10071403

Zielinska, A., Carreiró, F., Oliveira, A.M., Neves, A., Pires, B., Nagasamy Venkatesh, D., Durazzo, A., Lucarini, M., Eder, P., Silva, A.M., et al. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules. 2020; 25: 3731. DOI: https://doi.org/10.3390/molecules25163731

Xiao, X., Teng, F., Shi, C., Chen, J., Wu, S., Wang, B., Meng, X., Essiet Imeh, A., Li, W. Polymeric Nanoparticles—Promising Carriers for Cancer Therapy. Front Bioeng Biotechnol. 2022; 10.

Xiao, X., Teng, F., Shi, C., Chen, J., Wu, S., Wang, B., Meng, X., Essiet Imeh, A., Li, W. Polymeric Nanoparticles—Promising Carriers for Cancer Therapy. Front Bioeng Biotechnol. 2022; 10. DOI: https://doi.org/10.3389/fbioe.2022.1024143

Mittal, P., Saharan, A., Verma, R., Altalbawy, F.M.A., Alfaidi, M.A., Batiha, G.E.S., Akter, W., Gautam, R.K., Uddin, M.S., Rahman, M.S. Dendrimers: A New Race of Pharmaceutical Nanocarriers. Biomed Res Int. 2021; 2021, doi:10.1155/2021/8844030. DOI: https://doi.org/10.1155/2021/8844030

Chis, A.A., Dobrea, C., Morgovan, C., Arseniu, A.M., Rus, L.L., Butuca, A., Juncan, A.M., Totan, M., Vonica-Tincu, A.L., Cormos, G., et al. Applications and Limitations of Dendrimers in Biomedicine. Molecules. 2020; 25. DOI: https://doi.org/10.3390/molecules25173982

Bober, Z., Bartusik-Aebisher, D., Aebisher, D. Application of Dendrimers in Anticancer Diagnostics and Therapy. Molecules. 2022; 27. DOI: https://doi.org/10.3390/molecules27103237

Bae, Y., Lee, J., Kho, C., Choi, J.S., Han, J. Apoptin Gene Delivery by a PAMAM Dendrimer Modified with a Nuclear Localization Signal Peptide as a Gene Carrier for Brain Cancer Therapy. Korean Journal of Physiology and Pharmacology. 2021; 25: 467–478,

doi:10.4196/KJPP.2021.25.5.467. DOI: https://doi.org/10.4196/kjpp.2021.25.5.467

Zenze, M., Daniels, A., Singh, M. Dendrimers as Modifiers of Inorganic Nanoparticles for Therapeutic Delivery in Cancer. Pharmaceutics. 2023; 15. DOI: https://doi.org/10.3390/pharmaceutics15020398

Ghezzi, M., Pescina, S., Padula, C., Santi, P., Del Favero, E., Cantù, L., Nicoli, S. Polymeric Micelles in Drug Delivery: An Insight of the Techniques for Their Characterization and Assessment in Biorelevant Conditions. Journal of Controlled Release. 2021; 332: 312–336.

Elumalai, K., Srinivasan, S., Shanmugam, A. Review of the Efficacy of Nanoparticle-Based Drug Delivery Systems for Cancer Treatment. Biomedical Technology. 2024; 5: 109–122. DOI: https://doi.org/10.1016/j.bmt.2023.09.001

Sun, Y., Li, B., Cao, Q., Liu, T., Li, J. Targeting Cancer Stem Cells with Polymer Nanoparticles for Gastrointestinal Cancer Treatment. Stem Cell Res Ther. 2022; 13. DOI: https://doi.org/10.1186/s13287-022-03180-9

Ghezzi, M., Pescina, S., Padula, C., Santi, P., Del Favero, E., Cantù, L., Nicoli, S. Polymeric Micelles in Drug Delivery: An Insight of the Techniques for Their Characterization and Assessment in Biorelevant Conditions. Journal of Controlled Release. 2021; 332: 312–336. DOI: https://doi.org/10.1016/j.jconrel.2021.02.031

التنزيلات

منشور

2024-09-24

كيفية الاقتباس

Abu Dayyih, W., Hailat, M. ., Albtoush, S., Albtoush, E., Abu Dayah, A., Alabbadi, I., & Hamad, M. F. (2024). التطورات في مجال العلاج باستخدام الأدوية المحضرة باستخدام العلاج النانوي في علاج مرض السرطان: مراجعة علمية. Jordan Journal of Pharmaceutical Sciences, 17(3), 506–529. https://doi.org/10.35516/jjps.v17i3.2384

إصدار

القسم

Articles

الأعمال الأكثر قراءة لنفس المؤلف/المؤلفين