تقييم السمية الخلوية والنشاط المضاد للبكتيريا لجسيمات الفضة النانونية المصنعة بالتكنولوجيا الخضراء باستخدام مستخلص نبات اللبلاب
DOI:
https://doi.org/10.35516/jjps.v18i2.2620الكلمات المفتاحية:
اللبلاب (Hedera helix)، الجسيمات النانوية الفضية، التخليق الأخضر، المكورات العنقودية الذهبية، الزائفة الزنجاري، خلايا سرطان الرئة A549الملخص
في الوقت الحاضر جذبت جسيمات الفضة النانوية اهتمامًا كبيرًا نظرًا لخصائصها الفريدة التي تجعلها مفيدة في الطب الحيوي وأجهزة الاستشعار ومضادات الميكروبات، والمحفزات، وتطبيقات الألياف الضوئية. يعتبر التوليف الأخضر هو الطريقة الأكثر أمانًا وأسهل لإنتاج جسيمات الفضة النانوية. هدفت الدراسة إلى التحقق من النشاط المضاد للبكتيريا والسمية الخلوية لجسيمات الفضة النانوية المحضرة باستخدام المستخلص المائي لنبات اللبلاب ضد أنواع بكتيريا وخلايا سرطان الرئة. تم تصنيع جزيئات الفضة النانوية باستخدام المستخلص المائي لنبات اللبلاب كعامل اختزال والبولي فينايل بيروليدين كمثبت. ومن ثم تشخيص جزئيات الفضة النانوية المصنعة بواسطة مقياس الطيف الضوئي للأشعة فوق البنفسجية ومحلل حجم الجسيمات بطريقة تشتت الضوء الديناميكي. تم تصنيع هذه الجزئيات بنجاح وأظهرت أقصى امتصاص عند 448 نانوميتر مع تحسن في نشاطها السام لخلايا الرئة السرطانية بقيمة 15.16 ميكروغرام /مل كأدنى تركيز مثبط. وتحسن في نشاط هذه الجزئيات النانونية كمضاد للبكتيريا (المكورات العنقودية الذهبية) مقارنه مع المستخلص المائي. تعتبر الطرق البيولوجية فعالة من حيث التكلفة وصديقة للبيئة، وبالتالي يمكن أن تكون بديلاً اقتصاديًا وفعالاً لتخليق جسيمات الفضة النانوية على نطاق واسع.
المراجع
Khan I., Saeed K. and Khan I. Nanoparticles: Properties, applications and toxicities. Arabian J. Chem. 2019; 12(7):908-931. DOI: https://doi.org/10.1016/j.arabjc.2017.05.011
Matalqah S., Lafi Z. and Al-Kabariti A.Y. A recent review of PLGA-PEG hybrid nanoparticles for anticancer and anti-inflammatory applications. Jordan J. Pharm. Sci. 2025; 18(1):180-195. DOI: https://doi.org/10.35516/jjps.v18i1.2737
Iravani S., Korbekandi H., Mirmohammadi S.V. and Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sci. 2014; 9(6):385-406.
Ghorbani H.R., Safekordi A.A., Attar H. and Sorkhabadi S.M. Biological and non-biological methods for silver nanoparticles synthesis. Chem. Biochem. Eng. Q. 2011; 25(3):317-326.
Vithiya K. and Sen S. Biosynthesis of nanoparticles. Int. J. Pharm. Sci. Res. 2011; 2(11):2781.
Patel S. A review on synthesis of silver nanoparticles-a green expertise. Life Sci. Leaflets. 2021; 132.
Ahmed S., Ahmad M., Swami B.L. and Ikram S. A review on plants extracts mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res. 2016; 7(1):17-28. DOI: https://doi.org/10.1016/j.jare.2015.02.007
Metcalfe D.J. Hedera helix L. J. Ecol. 2005; 93(3):632-648. DOI: https://doi.org/10.1111/j.1365-2745.2005.01021.x
Al-Snafi A.E. Pharmacological and therapeutic activities of Hedera helix—a review. J. Pharm. 2018; 8(5):41-53.
Stauss-Grabo M., Atiye S., Warnke A., Wedemeyer R.S., Donath F. and Blume H.H. Observational study on the tolerability and safety of film-coated tablets containing ivy extract (Prospan® Cough Tablets) in the treatment of colds accompanied by coughing. Phytomedicine. 2011; 18(6):433-436. DOI: https://doi.org/10.1016/j.phymed.2010.11.009
Fazio S., Pouso J., Dolinsky D., Fernandez A., Hernandez M., Clavier G. and Hecker M. Tolerance, safety and efficacy of Hedera helix extract in inflammatory bronchial diseases under clinical practice conditions: a prospective, open, multicentre postmarketing study in 9657 patients. Phytomedicine. 2009; 16(1):17-24. DOI: https://doi.org/10.1016/j.phymed.2006.05.003
Cwientzek U., Ottillinger B. and Arenberger P. Acute bronchitis therapy with ivy leaves extracts in a two-arm study. A double-blind, randomised study vs. another ivy leaves extract. Phytomedicine. 2011; 18(13):1105-1109. DOI: https://doi.org/10.1016/j.phymed.2011.06.014
Khan M.F., Akram M., Akhter N., Mukhtiar M., Zahid R., Khan F.S., et al. The evaluation of efficacy and safety of Cough (EMA) granules used for upper respiratory disorders. Pak. J. Pharm. Sci. 2018; 31(6):2617-2622.
Lutsenko Y.U.L.I.A., Bylka W.I.E.S.Ł.A.W.A., Matlawska I. and Darmohray R.O.M.A.N. Hedera helix as a medicinal plant. Herba Polonica. 2010; 56(1):83-96.
Mukattash H.K., Issa R., Hajleh M.N.A. and Al-Daghistani H. Inhibitory effects of polyphenols from Equisetum ramosissimum and Moringa peregrina extracts on Staphylococcus aureus, collagenase, and tyrosinase enzymes: in vitro studies. Jordan J. Pharm. Sci. 2024; 17(3):530-548. DOI: https://doi.org/10.35516/jjps.v17i3.2164
Abbasifar A., Ghani S., Irvani M.A., Rafiee B., Kaji B.V. and Akbari A. Antibacterial activity of silver nanoparticles synthesized by using extracts of Hedera helix. Zahedan J. Res. Med. Sci. 2017; 19(1). DOI: https://doi.org/10.17795/zjrms-5920
El Aziz M.M.A., Ashour A.S. and Melad A.S.G. A review on saponins from medicinal plants: chemistry, isolation, and determination. J. Nanomed. Res. 2019; 8(1):282-288. DOI: https://doi.org/10.15406/jnmr.2019.07.00199
Bissinger R., Modicano P., Alzoubi K., Honisch S., Faggio C., Abed M. and Lang F. Effect of saponin on erythrocytes. Int. J. Hematol. 2014; 100:51-59. DOI: https://doi.org/10.1007/s12185-014-1605-z
Lohvina H., Sándor M. and Wink M. Effect of ethanol solvents on total phenolic content and antioxidant properties of seed extracts of Fenugreek (Trigonella foenum-graecum L.) varieties and determination of phenolic composition by HPLC-ESI-MS. Diversity. 2021; 14(1):7. DOI: https://doi.org/10.3390/d14010007
Chang C.C., Yang M.H., Wen H.M. and Chern J.C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002; 10(3). DOI: https://doi.org/10.38212/2224-6614.2748
Matusiewicz M., Kosieradzka I., Niemiec T., Grodzik M., Antushevich H., Strojny B. and Gołębiewska M. In vitro influence of extracts from snail Helix aspersa Müller on the colon cancer cell line Caco-2. Int. J. Mol. Sci. 2018; 19(4):1064. DOI: https://doi.org/10.3390/ijms19041064
Re R., Pellegrini N., Proteggente A., Pannala A., Yang M. and Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999; 26(9-10):1231-1237. DOI: https://doi.org/10.1016/S0891-5849(98)00315-3
Zein R., Alghoraibi I., Soukkarieh C., Ismail M.T. and Alahmad A. Influence of polyvinylpyrrolidone concentration on properties and anti-bacterial activity of green synthesized silver nanoparticles. Micromachines. 2022; 13(5):777. DOI: https://doi.org/10.3390/mi13050777
Cockerill F.R., Wikler M., Bush K., Dudley M., Eliopoulos G. and Hardy D. Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing: twenty-second informational supplement. 2012.
Abu‐Niaaj L.F., Al‐Daghistani H.I., Katampe I., Abu‐Irmaileh B. and Bustanji Y.K. Pomegranate peel: Bioactivities as antimicrobial and cytotoxic agents. Food Sci. Nutr. 2024; 12(4):2818-2832. DOI: https://doi.org/10.1002/fsn3.3963
Biemer J.J. Antimicrobial susceptibility testing by the Kirby-Bauer disc diffusion method. Ann. Clin. Lab. Sci. 1973; 3(2):135-140.
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983; 65(1-2):55-63. DOI: https://doi.org/10.1016/0022-1759(83)90303-4
Maurya D.K., Nandakumar N. and Devasagayam T.P.A. Anticancer property of gallic acid in A549, a human lung adenocarcinoma cell line, and possible mechanisms. J. Clin. Biochem. Nutr. 2010; 48(1):85-90. DOI: https://doi.org/10.3164/jcbn.11-004FR
Guta T. and Jemal K. Antioxidant and antimicrobial potentials of Nicotiana glauca Graham leaves extracts and synthesized silver nanoparticles: a phytochemical approach. Jordan J. Pharm. Sci. 2025; 18(1):57-76. DOI: https://doi.org/10.35516/jjps.v18i1.2180
Jalilian F., Chahardoli A., Sadrjavadi K., Fattahi A. and Shokoohinia Y. Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: characterization, antioxidant activities, antibacterial and cytotoxicity effects. Adv. Powder Technol. 2020; 31(3):1323-1332. DOI: https://doi.org/10.1016/j.apt.2020.01.011
Mohanta Y.K., Panda S.K., Biswas K., Tamang A., Bandyopadhyay J., De D., et al. Biogenic synthesis of silver nanoparticles from Cassia fistula (Linn.): in vitro assessment of their antioxidant, antimicrobial and cytotoxic activities. IET Nanobiotechnol. 2016; 10(6):438-444. DOI: https://doi.org/10.1049/iet-nbt.2015.0104
Mishra K., Ojha H. and Chaudhury N.K. Estimation of antiradical properties of antioxidants using DPPH assay: a critical review and results. Food Chem. 2012; 130(4):1036-1043. DOI: https://doi.org/10.1016/j.foodchem.2011.07.127
Kharat S.N. and Mendhulkar V.D. Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Mater. Sci. Eng. C 2016; 62:719-724. DOI: https://doi.org/10.1016/j.msec.2016.02.024
Divya K.S., Harshitha B.S., Kumar D. and Chauhan J.B. In vitro investigation of antioxidant potentiality of methanol and silver nanoparticles extract from Trigonella foenum-graecum. J. Pharmacogn. Phytochem. 2019; 8(3):2213-2221.
Noginov M.A., Zhu G., Bahoura M., Adegoke J., Small C., Ritzo B.A., et al. The effect of gain and absorption on surface plasmons in metal nanoparticles. Appl. Phys. B 2007; 86:455-460. DOI: https://doi.org/10.1007/s00340-006-2401-0
Nayak D., Ashe S., Rauta P.R., Kumari M. and Nayak B. Bark extract mediated green synthesis of silver nanoparticles: evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Mater. Sci. Eng. C 2016; 58:44-52. DOI: https://doi.org/10.1016/j.msec.2015.08.022
Raja S., Ramesh V. and Thivaharan V. Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arab. J. Chem. 2017; 10(2):253-261. DOI: https://doi.org/10.1016/j.arabjc.2015.06.023
Rivera-Rangel R.D., González-Muñoz M.P., Avila-Rodriguez M., Razo-Lazcano T.A. and Solans C. Green synthesis of silver nanoparticles in oil-in-water microemulsion and nano-emulsion using geranium leaf aqueous extract as a reducing agent. Colloids Surf. A Physicochem. Eng. Asp. 2018; 536:60-67. DOI: https://doi.org/10.1016/j.colsurfa.2017.07.051
Khoshnamvand M., Huo C. and Liu J. Silver nanoparticles synthesized using Allium ampeloprasum L. leaf extract: characterization and performance in catalytic reduction of 4-nitrophenol and antioxidant activity. J. Mol. Struct. 2019; 1175:90-96. DOI: https://doi.org/10.1016/j.molstruc.2018.07.089
Lam V.P., Beomseon L., Anh V.K., Loi D.N., Kim S., Kwang-Ya L. and Park J. Effectiveness of silver nitrate application on plant growth and bioactive compounds in Agastache rugosa (Fisch. & CA Mey.) kuntze. Heliyon. 2023; 9(9). DOI: https://doi.org/10.1016/j.heliyon.2023.e20205
Kim S.T., Saha K., Kim C. and Rotello V.M. The role of surface functionality in determining nanoparticle cytotoxicity. Acc. Chem. Res. 2013; 46(3):681-691. DOI: https://doi.org/10.1021/ar3000647
Zazharskyi V.V., Davydenko P., Kulishenko O., Borovik I.V., Zazharska N.M. and Brygadyrenko V.V. Antibacterial and fungicidal activities of ethanol extracts of 38 species of plants. Biosyst. Divers. 2020; 28(3):281-289. DOI: https://doi.org/10.15421/012037
Zazharskyi V.V., Davydenko P.O., Kulishenko O.M., Borovik I.V. and Brygadyrenko V.V. Antibacterial and fungicidal activities of ethanol extracts from Cotinus coggygria, Rhus typhina, R. trilobata, Toxicodendron orientale, Hedera helix, Aralia elata, Leptopus chinensis and Mahonia aquifolium. Regul. Mech. Biosyst. 2020; 11(2). DOI: https://doi.org/10.15421/022046
Reddy N.J., Vali D.N., Rani M. and Rani S.S. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Mater. Sci. Eng. C. 2014; 34:115-122. DOI: https://doi.org/10.1016/j.msec.2013.08.039
Feng Q.L., Wu J., Chen G.Q., Cui F.Z., Kim T.N. and Kim J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000; 52(4):662-668. DOI: https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
Medici S., Peana M., Nurchi V.M. and Zoroddu M.A. Medical uses of silver: history, myths, and scientific evidence. J. Med. Chem. 2019; 62(13):5923-5943. DOI: https://doi.org/10.1021/acs.jmedchem.8b01439
Zhang X.F., Liu Z.G., Shen W. and Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016; 17(9):1534. DOI: https://doi.org/10.3390/ijms17091534
Abdalla A.M., Xiao L., Ullah M.W., Yu M., Ouyang C. and Yang G. Current challenges of cancer anti-angiogenic therapy and the promise of nanotherapeutics. Theranostics. 2018; 8(2):533. DOI: https://doi.org/10.7150/thno.21674
Simon S., Sibuyi N.R.S., Fadaka A.O., Meyer S., Josephs J., Onani M.O., et al. Biomedical applications of plant extract-synthesized silver nanoparticles. Biomedicines. 2022; 10(11):2792 DOI: https://doi.org/10.3390/biomedicines10112792







