Functional Role of Essential Oils as Antimicrobial and Antioxidat Agents in Food Industry: A Review
DOI:
https://doi.org/10.35516/jjas.v19i1.1237Keywords:
Essential Oils, Antioxidants, Antimicrobial agents, Phenolic Compounds, food industryAbstract
Essential oils (EOs) possess both antimicrobial and antioxidant activities in food systems. Variations in EOs effectiveness were dictated by their components, effective concentrations, intrinsic factors of food composition as well as extrinsic factors such as storage temperature. The antimicrobial and antioxidant activities of EOs are a result of the presence of phenolic components at high concentrations. EOs could have better effectiveness than single component because these constitutes could act additively or even synergistically in EOs. EOs have antimicrobial activity against wide range of microorganisms and their mode of action is related to disintegration of cellular membrane integrity followed by inactivation of other microbial cells components. The antioxidant mode of action for EOs is related to neutralization free radicals and peroxide decomposition in particularly when tested in meat, dairy, fruits and vegetables. The high effectiveness of EOs indicates that they could replace the synthetic food additives. This scientific review summarizes the most recent studies about effectiveness of EOs as antimicrobial and antioxidant agents to be used in food industry.
References
Ahmed, A. F., Attia, F. A., Liu, Z., Li, C., Wei, J., and Kang, W. (2019). Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L.) plants. Food Science and Human Wellness, 8(3), 299-305. DOI: https://doi.org/10.1016/j.fshw.2019.07.004
Allenspach, M. D., Valder, C., and Steuer, C. (2020). Absolute quantification of terpenes in conifer-derived essential oils and their antibacterial activity. Journal of Analytical Science and Technology, 11(1), 1-10. DOI: https://doi.org/10.1186/s40543-020-00212-y
Ameh, S. J., and Obodozie-Ofoegbu, O. (2016). Essential oils as flavors in carbonated cola and citrus soft drinks. In Essential Oils in Food Preservation, Flavor and Safety (pp. 111-121). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-416641-7.00011-0
Amorati, R., Foti, M. C., and Valgimigli, L. (2013). Antioxidant activity of essential oils. Journal of Agricultural and Food Chemistry, 61(46), 10835-10847. DOI: https://doi.org/10.1021/jf403496k
Antal, T., Chong, C. H., Law, C. L., and Sikolya, L. (2014). Effects of freeze drying on retention of essential oils, changes in glandular trichomes of lemon balm leaves. International Food Research Journal, 21(1), 387.
Anupama, G., Netravathi, D. K., and Avinash, M. (2019). Essential oils: A novel source for food preservation. Journal of Pharmacognosy and Phytochemistry, 8(1), 2098-2101.
Araujo, C. F. (2019). Efecto antimicrobiano de aceitesesenciales de orégano (Origanum vulgare) y tomillo (Thymus vulgare) individuales y encombinación contra Salmonella Typhimurium. MScThesis. Zamorano, Honduras.
Badawy, M. E., Marei, G. I. K., Rabea, E. I., and Taktak, N. E. (2019). Antimicrobial and antioxidant activities of hydrocarbon and oxygenated monoterpenes against some foodborne pathogens through in vitro and in silico studies. Pesticide Biochemistry and Physiology, 158, 185-200. DOI: https://doi.org/10.1016/j.pestbp.2019.05.008
Başer K.H.C. and F Demirci (2007), Chemistry of essential oils. Flavours and Fragrances: Chemistry, Bioprocessing and Sustainability, edited by Berger RG. New York: Springer 2007: 43-86.
Ben-Hsouna, A., Ben Halima, N., Smaoui, S., and Hamdi, N. (2017). Citrus lemon essential oil: Chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat. Lipids in Health and Disease, 16(1), 1-11. DOI: https://doi.org/10.1186/s12944-017-0487-5
Benabdelkader, T., Zitouni, A., Guitton, Y., Jullien, F., Maitre, D., Casabianca, H., and Kameli, A. (2011). Essential oils from wild populations of Algerian Lavandula stoechas L.: composition, chemical variability, and in vitro biological properties. Chemistry and Biodiversity, 8(5), 937-953. DOI: https://doi.org/10.1002/cbdv.201000301
Bhargava, K., Wang, X., Donabedian, S., Zervos, M., da Rocha, L., and Zhang, Y. (2011). Methicillin-resistant Staphylococcus aureus in retail meat, Detroit, Michigan, USA. Emerging Infectious Diseases, 17(6), 1135 DOI: https://doi.org/10.3201/eid1706.101905
Bhavaniramya, S., Vishnupriya, S., Al-Aboody, M. S., Vijayakumar, R., and Baskaran, D. (2019). Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain and Oil science and Technology, 2(2), 49-55. DOI: https://doi.org/10.1016/j.gaost.2019.03.001
Boskovic, M., Zdravkovic, N., Ivanovic, J., Janjic, J., Djordjevic, J., Starcevic, M., and Baltic, M. Z. (2015). Antimicrobial activity of thyme (Tymus vulgaris) and oregano (Origanum vulgare) essential oils against some food-borne microorganisms. Procedia Food Science, 5, 18-21. DOI: https://doi.org/10.1016/j.profoo.2015.09.005
Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223-253. DOI: https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
Burt, S. A., van der Zee, R., Koets, A. P., de Graaff, A. M., van Knapen, F., Gaastra, W., and Veldhuizen, E. J. (2007). Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157: H7. Applied and Environmental Microbiology,73(14), 4484-4490. DOI: https://doi.org/10.1128/AEM.00340-07
Chaieb, K., Hajlaoui, H., Zmantar, T., Kahla‐Nakbi, A. B., Rouabhia, M., Mahdouani, K., and Bakhrouf, A. (2007). The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 21(6), 501-506. DOI: https://doi.org/10.1002/ptr.2124
Chao, S. C., Young, D. G., and Oberg, C. J. (2000). Screening for inhibitory activity of essential oils on selected bacteria, fungi and viruses. Journal of Essential Oil Research, 12(5), 639-649. DOI: https://doi.org/10.1080/10412905.2000.9712177
Cherif, A., Ammar, S., and Boukhchina, S. (2019). Composition and characterization by GC-MS of the essential oil extracted from Nicotianaglauca Graham. Grasas y Aceites, 70(3), e317-e317. DOI: https://doi.org/10.3989/gya.0927182
Chouhan, S., Sharma, K., and Guleria, S. (2017). Antimicrobial activity of some essential oils—present status and future perspectives. Medicines, 4(3), 58. DOI: https://doi.org/10.3390/medicines4030058
Churklam, W., Chaturongakul, S., Ngamwongsatit, B., andAunpad, R. (2020). The mechanisms of action of carvacrol and its synergism with nisin against Listeria monocytogenes on sliced bologna sausage. Food Control, 108, 106864. DOI: https://doi.org/10.1016/j.foodcont.2019.106864
Clemente, I., Aznar, M., Silva, F., and Nerín, C. (2016). Antimicrobial properties and mode of action of mustard and cinnamon essential oils and their combination against foodborne bacteria. Innovative Food Science and Emerging Technologies, 36, 26-33. DOI: https://doi.org/10.1016/j.ifset.2016.05.013
Conde-Hernández, L. A., Espinosa-Victoria, J. R., Trejo, A., and Guerrero-Beltrán, J. Á. (2017). CO2-supercritical extraction, hydrodistillation and steam distillation of essential oil of rosemary (Rosmarinus Officinalis). Journal of Food Engineering, 200, 81-86. DOI: https://doi.org/10.1016/j.jfoodeng.2016.12.022
Constanza, K., Tallury, S., Whaley, J., Sanders, T., and Dean, L. (2015). Chemical composition of the essential oils from leaves of edible (Arachis hypogaea L.) and Perennial (Arachisglabrata Benth.) peanut plants. Journal of Essential Oil Bearing Plants, 18(3), 605-612. DOI: https://doi.org/10.1080/0972060X.2014.961039
Debonne, E., Van Bockstaele, F., Samapundo, S., Eeckhout, M., and Devlieghere, F. (2018). The use of essential oils as natural antifungal preservatives in bread products. Journal of Essential Oil Research, 30(5), 309-318. DOI: https://doi.org/10.1080/10412905.2018.1486239
Delgado-Pando, G., Ekonomou, S. I., Stratakos, A. C., and Pintado, T. (2021). Clean Label Alternatives in Meat Products. Foods, 10(7), 1615. DOI: https://doi.org/10.3390/foods10071615
Demuner, A. J., Almeida Barbosa, L. C., Gonçalves Magalhaes, C., Da Silva, C. J., Alvares Maltha, C. R., and LelisPinheiro, A. (2011). Seasonal variation in the chemical composition and antimicrobial activity of volatile oils of three species of Leptospermum (Myrtaceae) grown in Brazil. Molecules, 16(2), 1181-1191. DOI: https://doi.org/10.3390/molecules16021181
Ebani, V. V., Nardoni, S., Bertelloni, F., Giovanelli, S., Rocchigiani, G., Pistelli, L., and Mancianti, F. (2016). Antibacterial and antifungal activity of essential oils against some pathogenic bacteria and yeasts shed from poultry. Flavour and Fragrance Journal, 31(4), 302-309. DOI: https://doi.org/10.1002/ffj.3318
Erland, L. A., and Mahmoud, S. S. (2016). Lavender (Lavandula angustifolia) oils. Essential oils in food preservation, Flavor and Safety, 501-508. DOI: https://doi.org/10.1016/B978-0-12-416641-7.00057-2
Fasihi, H., Noshirvani, N., Hashemi, M., Fazilati, M., Salavati, H., and Coma, V. (2019). Antioxidant and antimicrobial properties of carbohydrate-based films enriched with cinnamon essential oil by Pickering emulsion method. Food Packaging and Shelf Life, 19, 147-154. DOI: https://doi.org/10.1016/j.fpsl.2018.12.007
Filly, A., Fabiano-Tixier, A. S., Louis, C., Fernandez, X., and Chemat, F. (2016). Water as a green solvent combined with different techniques for extraction of essential oil from lavender flowers. Comptes Rendus Chimie, 19(6), 707-717. DOI: https://doi.org/10.1016/j.crci.2016.01.018
Golmohammadi, M., Borghei, A., Zenouzi, A., Ashrafi, N., and Taherzadeh, M. J. (2018). Optimization of essential oil extraction from orange peels using steam explosion. Heliyon, 4(11), e 00893. DOI: https://doi.org/10.1016/j.heliyon.2018.e00893
Handa, S. S. (2008). An overview of extraction techniques for medicinal and aromatic plants. Extraction Technologies for Medicinal and Aromatic Plants, 1, 21-40.
Harzallah, H. J., Kouidhi, B., Flamini, G., Bakhrouf, A., and Mahjoub, T. 2011. Chemical composition, antimicrobial potential against cariogenic bacteria and cytotoxic activity of Tunisian Nigella sativa essential oil and thymo quinone. Food Chemistry, 129(4), 1469-1474. DOI: https://doi.org/10.1016/j.foodchem.2011.05.117
Hashemi, S. M. B., Khorram, S. B., and Sohrabi, M. (2017). Antioxidant activity of essential oils in foods. Essential oils in Food Processing: Chemistry, Safety and Applications, 247-265. DOI: https://doi.org/10.1002/9781119149392.ch8
Heer, A., Guleria, S., and Razdan, V. K. (2017). Chemical composition, antioxidant and antimicrobial activities and characterization of bioactive compounds from essential oil of Cinnamomum tamala grown in north-western Himalaya. Journal of Plant Biochemistry and Biotechnology, 26(2), 191-198. DOI: https://doi.org/10.1007/s13562-016-0381-7
Herman, R. A., Ayepa, E., Shittu, S., Fometu, S. S., and Wang, J. (2019). Essential oils and their applications-a mini review. Advanced Nutritional and Food Science. 4(4), 1-13.
Hyldgaard, M., Mygind, T., and Meyer, R. L. (2012). Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology, 3, 12. DOI: https://doi.org/10.3389/fmicb.2012.00012
Jafri, H., Ansari, F. A., and Ahmad, I. (2019). Prospects of essential oils in controlling pathogenic biofilm. In: New Look to Phytomedicine (pp. 203-236). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-814619-4.00009-4
Ji, J., Shankar, S., Royon, F., Salmieri, S., and Lacroix, M. (2021). Essential oils as natural antimicrobials applied in meat and meat products—A review. Critical Reviews in Food Science and Nutrition, 1-17. DOI: https://doi.org/10.1080/10408398.2021.1957766
Juliano, C., Mattana, A., and Usai, M. (2000). Composition and in vitro antimicrobial activity of the essential oil of Thymus herba-barona growing wild in Sardinia. Journal of Essential Oil Research, 12(4), 516-522. DOI: https://doi.org/10.1080/10412905.2000.9699578
Kang, J., Jin, W., Wang, J., Sun, Y., Wu, X., and Liu, L. (2019). Antibacterial and anti-biofilm activities of peppermint essential oil against Staphylococcus aureus. LWT-Food Science and Technology, 101, 639-645. DOI: https://doi.org/10.1016/j.lwt.2018.11.093
Kaur, R., Gupta, T. B., Bronlund, J., and kaur, l. (2021). The potential of rosemary as a functional ingredient for meat products-a review. Food Reviews International, 1-21. DOI: https://doi.org/10.1080/87559129.2021.1950173
Kayode, R. M., Azubuike, C. U., Laba, S. A., Dauda, A. O., Balogun, M. A., and Ajala, S. A. (2018). Chemical composition and anti-microbial activities of the essential oil of Adansonia digitata stem-bark and leaf on post-harvest control of tomato spoilage. LWT-Food Science and Technology, 93, 58-63. DOI: https://doi.org/10.1016/j.lwt.2018.03.014
Khan, M. A., Khan, T., and Ali, H. (2019). Plant cell culture strategies for the production of terpenes as green solvents. Biotechnological Production of Bio-active Natural Products, In: Industrial Applications of Green Solvents Publisher: Materials Research Forum LLC. 50, 1-20. DOI: https://doi.org/10.21741/9781644900239-1
Kokoska, L., Kloucek, P., Leuner, O., and Novy, P. (2019). Plant-derived products as antibacterial and antifungal agents in human health care. Current Medicinal Chemistry, 26(29), 5501-5541. DOI: https://doi.org/10.2174/0929867325666180831144344
Kozelová, D., Mura, L., Matejková, E., Lopašovský, Ľ., Vietoris, V., Mendelová, A and Chreneková, M. (2011). Organic products, consumer behavior on market and european organic product market situation. Potravinarstvo Slovak Journal of Food Sciences, 5(3), 20-26. DOI: https://doi.org/10.5219/96
Liang, J. Y., Ning, A. Q., Lu, P. Y., Shao, Y. Z., Xu, J., Yang, Y. Y., and Wang, H. L. (2020). Chemical composition and biological activity of essential oil extracted from the aerial part of Elsholtzia fruticosa against Ditylenchus destructor. Journal of Essential Oil Bearing Plants, 23(3), 575-582. DOI: https://doi.org/10.1080/0972060X.2020.1778542
Lou, Z., Chen, J., Yu, F., Wang, H., Kou, X., Ma, C., and Zhu, S. (2017). The antioxidant, antibacterial, antibiofilm activity of essential oil from Citrus Medica L. var. Sarcodactylis and its nanoemulsion. LWT-Food Science and Technology, 80, 371-377. DOI: https://doi.org/10.1016/j.lwt.2017.02.037
Manso, S., Pezo, D., Gómez-Lus, R., and Nerín, C. (2014). Diminution of aflatoxin B1 production caused by an active packaging containing cinnamon essential oil. Food Control, 45, 101-108. DOI: https://doi.org/10.1016/j.foodcont.2014.04.031
Marchese, A., Barbieri, R., Coppo, E., Orhan, I. E., Daglia, M., Nabavi, S. F., and Ajami, M. (2017). Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Critical Reviews in Microbiology, 43(6), 668-689. DOI: https://doi.org/10.1080/1040841X.2017.1295225
Marín, I., Sayas-Barberá, E., Viuda-Martos, M., Navarro, C., and Sendra, E. (2016). Chemical composition, antioxidant and antimicrobial activity of essential oils from organic fennel, parsley, and lavender from Spain. Foods, 5(1), 18. DOI: https://doi.org/10.3390/foods5010018
Martínez-Ávila, G. C., Aguilar-Zarate, P., and Rojas, R. (2021). Currently Applied Extraction Processes for Secondary Metabolites from Lippia turbinata and Turnera diffusa and Future Perspectives. Separations, 8(9), 158. DOI: https://doi.org/10.3390/separations8090158
Mehyar, G. F. and Richard Holley (2018). Active Packaging and non-Thermal Processing. In Packaging for Nonthermal Processing of Food, 2nd Edition. Wiley-Blackwell, West Sussex, UK. P 15- 41. DOI: https://doi.org/10.1002/9781119126881.ch2
Mejlholm, O., and Dalgaard, P. (2002). Antimicrobial effect of essential oils on the seafood spoilage micro‐organism Photobacterium phosphoreum in liquid media and fish products. Letters in Applied Microbiology, 34(1), 27-31. DOI: https://doi.org/10.1046/j.1472-765x.2002.01033.x
Mishra, A. P., Devkota, H. P., Nigam, M., Adetunji, C. O., Srivastava, N., Saklani, S and Khaneghah, A. M. (2020). Combination of essential oils in dairy products: A review of their functions and potential benefits. LWT-Food Science and Technology,133, 110116. DOI: https://doi.org/10.1016/j.lwt.2020.110116
Molapour, S., Shabkhiz, R., Askari, O., Shiri, H., Keramati, A., and Mahdavi, V. (2020). Chemical components and insecticidal effects of Lavandula angustifolia and Origanum vulgare essential oils on the growth different stages of Habrobracon hebetor Say (Hymenoptera: Braconidae). Jordan Journal of Biological Sciences Short Communication, 13(2).
Mutlu-Ingok, A., Devecioglu, D., Dikmetas, D. N., Karbancioglu-Guler, F., and Capanoglu, E. 2020. Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An updated review. Molecules, 25(20), 4711. DOI: https://doi.org/10.3390/molecules25204711
Nazari, M., Ghanbarzadeh, B., Kafil, H. S., Zeinali, M., and Hamishehkar, H. (2019). Garlic essential oil nanophytosomes as a natural food preservative: Its application in yogurt as food model. Colloid and Interface Science Communications, 30, 100176. DOI: https://doi.org/10.1016/j.colcom.2019.100176
Nazir, F., Salim, R., Yousf, N., Bashir M, N. H., and Hussain, S. Z. (2017). Natural antimicrobials for food preservation. Journal of Pharmacognosy and Photochemistry, 6(6), 2078-82.
Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., and De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12), 1451-1474. DOI: https://doi.org/10.3390/ph6121451
Neuenschwander, U., Guignard, F., and Hermans, I. (2010). Mechanism of the Aerobic Oxidation of α‐Pinene. Chem Sus Chem: Chemistry and Sustainability Energy and Materials, 3(1), 75-84. DOI: https://doi.org/10.1002/cssc.200900228
Nielsen, B., Colle, M. J., and Ünlü, G. (2021). Meat safety and quality: a biological approach. International Journal of Food Science and Technology, 56(1), 39-51. DOI: https://doi.org/10.1111/ijfs.14602
Nollet, L. M., and Rathore, H. S. (Eds.). (2017). Green pesticides handbook: Essential oils for pest control. CRC Press. DOI: https://doi.org/10.1201/9781315153131
Ozogul, Y., Boğa, E. K., Akyol, I., Durmus, M., Ucar, Y., Regenstein, J. M., and Köşker, A. R. (2020). Antimicrobial activity of thyme essential oil nanoemulsions on spoilage bacteria of fish and food-borne pathogens. Food Bioscience, 36, 100635. DOI: https://doi.org/10.1016/j.fbio.2020.100635
Paibon, W., Yimnoi, C. A., Tembab, N., Boonlue, W., Jampachaisri, K., Nuengchamnong, N and Ingkaninan, K. (2011). Comparison and evaluation of volatile oils from three different extraction methods for some Thai fragrant flowers. International Journal of Cosmetic Science, 33(2), 150-156. DOI: https://doi.org/10.1111/j.1468-2494.2010.00603.x
Patel, P. N., Patel, K. M., Chaudhary, D. S., Parmar, K. G., Patel, H. A., Kansagra, C. D., and Sen, D. J. (2011). Extraction of herbal aroma oils from solid surface. International Journal of Comprehensive Pharmacy, 9(2), 1-10.
Patel, S. (2015). Plant essential oils and allied volatile fractions as multifunctional additives in meat and fish-based food products: a review. Food Additives and Contaminants: Part A. 32 (7), 2015 DOI: https://doi.org/10.1080/19440049.2015.1040081
Pauli, A., and Kubeczka, K. H. (2010). Antimicrobial properties of volatile phenylpropanes. Natural product communications, 5(9), 1934578-1000500910. DOI: https://doi.org/10.1177/1934578X1000500910
Pauli, G. F., Case, R. J., Inui, T., Wang, Y., Cho, S., Fischer, N. H., and Franzblau, S. G. (2005). New perspectives on natural products in TB drug research. Life Sciences, 78(5), 485-494. DOI: https://doi.org/10.1016/j.lfs.2005.09.004
Pereira, T. S., de Sant'Anna, J. R., Silva, E. L., Pinheiro, A. L., and de Castro-Prado, M. A. A. (2014). In vitro genotoxicity of Melaleuca alternifolia essential oil in human lymphocytes. Journal of Ethnopharmacology, 151(2), 852-857. DOI: https://doi.org/10.1016/j.jep.2013.11.045
Pisoschi, A. M., Pop, A., Georgescu, C., Turcuş, V., Olah, N. K., andMathe, E. (2018). An overview of natural antimicrobials role in food. European Journal of Medicinal Chemistry, 143, 922-935. DOI: https://doi.org/10.1016/j.ejmech.2017.11.095
Porter, J. A., and Monu, E. A. (2019). Evaluating the antimicrobial efficacy of white mustard essential oil alone and in combination with thymol and carvacrol against Salmonella. Journal of food protection, 82(12), 2038-2043. DOI: https://doi.org/10.4315/0362-028X.JFP-19-029
Posadzki, P., Alotaibi, A., and Ernst, E. (2013). Adverse effects of aromatherapy: a systematic review of case reports and case series. Journal of the Australian-Traditional Medicine Society, 19(4), 246.
Radünz, M., da Trindade, M. L. M., Camargo, T. M., Radünz, A. L., Borges, C. D., Gandra, E. A., and Helbig, E. (2019). Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food Chemistry, 276, 180-186. DOI: https://doi.org/10.1016/j.foodchem.2018.09.173
Rashid, S., Rather, M. A., Shah, W. A., and Bhat, B. A. (2013). Chemical composition, antimicrobial, cytotoxic and antioxidant activities of the essential oil of Artemisia indica Willd. Food chemistry, 138(1), 693-700. DOI: https://doi.org/10.1016/j.foodchem.2012.10.102
Reyes-Jurado, F., Franco-Vega, A., Ramírez-Corona, N., Palou, E., and López-Malo, A. (2015). Essential oils: antimicrobial activities, extraction methods, and their modeling. Food Engineering Reviews, 7(3), 275-297. DOI: https://doi.org/10.1007/s12393-014-9099-2
Ribeiro, A. M., Estevinho, B. N., and Rocha, F. (2021). Preparation and incorporation of functional ingredients in edible films and coatings. Food and Bioprocess Technology, 14(2), 209-231. DOI: https://doi.org/10.1007/s11947-020-02528-4
Roller, S., and Seedhar, P. (2002). Carvacrol and cinnamic acid inhibit microbial growth in fresh‐cut melon and kiwi fruit at 4 and 8 C. Letters in Applied Microbiology, 35(5), 390-394. DOI: https://doi.org/10.1046/j.1472-765X.2002.01209.x
Sadekuzzaman, M., Mizan, M. F. R., Kim, H. S., Yang, S., and Ha, S. D. (2018). Activity of thyme and tea tree essential oils against selected foodborne pathogens in biofilms on abiotic surfaces. LWT-Food Science and Technology, 89, 134-139. DOI: https://doi.org/10.1016/j.lwt.2017.10.042
Saharkhiz, M. J., Motamedi, M., Zomorodian, K., Pakshir, K., Miri, R., and Hemyari, K. (2012). Chemical composition, antifungal and antibiofilm activities of the essential oil of Mentha piperita L. International Scholarly Research Notices, 2012. Article ID 718645. DOI: https://doi.org/10.5402/2012/718645
Said, A., L., Zahlane, K., Ghalbane, I., El Messoussi, S., Romane, A., Cavaleiro, C., and Salgueiro, L. (2015). Chemical composition and antibacterial activity of Lavandula coronopifolia essential oil against antibiotic-resistant bacteria. Natural Product Research, 29(6), 582-585. DOI: https://doi.org/10.1080/14786419.2014.954246
Said, Z. B. O. S., Haddadi-Guemghar, H., Boulekbache-Makhlouf, L., Rigou, P., Remini, H., Adjaoud, A., and Madani, K. (2016). Essential oils composition, antibacterial and antioxidant activities of hydrodistillated extract of Eucalyptus globulus fruits. Industrial Crops and Products, 89, 167-175. DOI: https://doi.org/10.1016/j.indcrop.2016.05.018
Sari, E., Berczynski, P., Kladna, A., Kruk, I., Dundar, O. B., Szymanska, M., and Aboul-Enein, H. Y. (2018). Synthesis and in vitro antioxidant activity study of some novel substituted piperazinyl flavone compounds. Medicinal Chemistry, 14(4), 372-386. DOI: https://doi.org/10.2174/1573406414666171204105000
Shaaban, H. A. (2020). Essential Oil as Antimicrobial Agents: Efficacy, Stability, and Safety Issues for Food Application. Essential Oils-Bioactive Compounds, New Perspectives and Applications, 1-33. DOI: https://doi.org/10.5772/intechopen.92305
Shahidi, F., and Zhong, Y. (2015). Measurement of antioxidant activity. Journal of Functional Foods, 18, 757-781. DOI: https://doi.org/10.1016/j.jff.2015.01.047
Singh, N., Singh, R. K., Bhunia, A. K., and Stroshine, R. L. (2002). Efficacy of chlorine dioxide, ozone, and thyme essential oil or a sequential washing in killing Escherichia coli O157: H7 on lettuce and baby carrots. LWT-Food Science and Technology, 35(8), 720-729. DOI: https://doi.org/10.1006/fstl.2002.0933
Skandamis, P. N., and Nychas, G. J. (2001). Effect of oregano essential oil on microbiological and physico‐chemical attributes of minced meat stored in air and modified atmospheres. Journal of Applied Microbiology, 91(6), 1011-1022. DOI: https://doi.org/10.1046/j.1365-2672.2001.01467.x
Stephane, F. F. Y., and Juleshttps, B. K. J. (2020). Terpenoids as important bioactive constituents of essential oils. In Essential Oils-Bioactive Compounds, New Perspectives and Applications. Intech Open. DOI: 10.5772/intechopen.91426. DOI: https://doi.org/10.5772/intechopen.91426
Tahlan, V. (2014). Antimicrobial Activity of Essential Oil Emulsions and Possible Synergistic Effect On Food Borne Pathogens. Wayne State University Theses. http://digitalcommons.wayne.edu/oa_theses.
Toauibia, M. (2015). Antimicrobial activity of the essential oil of Myrtus communis L berries growing wild in Algeria. Journal of Fundamental and Applied Sciences, 7(2), 150-162. DOI: https://doi.org/10.4314/jfas.v7i2.1
Tongnuanchan P and S Benjakul (2014) Essential oils: extraction, bioactivities, and their uses for food preservation. Journal of Food Science, 79: R1231-R1249. DOI: https://doi.org/10.1111/1750-3841.12492
Tyagi, A. K., and Malik, A. (2011). Antimicrobial potential and chemical composition of Eucalyptus globulus oil in liquid and vapour phase against food spoilage microorganisms. Food Chemistry, 126(1), 228-235. DOI: https://doi.org/10.1016/j.foodchem.2010.11.002
Ultee, A., Bennik, M. H. J., and Moezelaar, R. J. A. E. M. (2002). The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Applied and Environmental Microbiology, 68(4), 1561-1568. DOI: https://doi.org/10.1128/AEM.68.4.1561-1568.2002
Van Haute, S., Raes, K., Van Der Meeren, P., and Sampers, I. (2016). The effect of cinnamon, oregano and thyme essential oils in marinade on the microbial shelf life of fish and meat products. Food Control, 68, 30-39. DOI: https://doi.org/10.1016/j.foodcont.2016.03.025
Végh, A., Bencsik, T., Molnár, P., Böszörményi, A., Lemberkovics, É., Kovács, K., and Horváth, G. (2012). Composition and antipseudomonal effect of essential oils isolated from different lavender species. Natural Product Communications, 7(10), 1934578X1200701039. DOI: https://doi.org/10.1177/1934578X1200701039
Vergis, J., Gokulakrishnan, P., Agarwal, R. K., and Kumar, A. (2015). Essential oils as natural food antimicrobial agents: a review. Critical Reviews in Food Science and Nutrition, 55(10), 1320-1323. DOI: https://doi.org/10.1080/10408398.2012.692127
Vital, A. C. P., Guerrero, A., Monteschio, J. D. O., Valero, M. V., Carvalho, C. B., de Abreu Filho, B. A., and do Prado, I. N. (2016). Effect of edible and active coating (with rosemary and oregano essential oils) on beef characteristics and consumer acceptability. PLOS one, 11(8), e0160535. DOI: https://doi.org/10.1371/journal.pone.0160535
Xing, T., Gao, F., Tume, R. K., Zhou, G., and Xu, X. (2019). Stress effects on meat quality: a mechanistic perspective. Comprehensive Reviews in Food Science and Food Safety, 18(2), 380-401. DOI: https://doi.org/10.1111/1541-4337.12417
Yousefi, M., Khorshidian, N., and Hosseini, H. (2020). Potential application of essential oils for mitigation of Listeria monocytogenes in meat and poultry products. Frontiers in Nutrition, 7, 255. DOI: https://doi.org/10.3389/fnut.2020.577287
Zhong, Y., and Shahidi, F. (2012). Lipophilised epigallocatechin gallate (EGCG) derivatives and their antioxidant potential in food and biological systems. Food Chemistry, 131(1), 22-30. DOI: https://doi.org/10.1016/j.foodchem.2011.07.089
Zuzarte, M., Gonçalves, M. J., Cruz, M. T., Cavaleiro, C., Canhoto, J., Vaz, S and Salgueiro, L. (2012). Lavandul aluisieri essential oil as a source of antifungal drugs. Food Chemistry, 135(3), 1505-1510. DOI: https://doi.org/10.1016/j.foodchem.2012.05.090
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 DSR Publishers/The University of Jordan. All Rights Reserved

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
-
This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.