Functional Role of Essential Oils as Antimicrobial and Antioxidat Agents in Food Industry: A Review




Essential Oils, Antioxidants, Antimicrobial agents, Phenolic Compounds, food industry


Essential oils (EOs) possess both antimicrobial and antioxidant activities in food systems. Variations in EOs effectiveness were dictated by their components, effective concentrations, intrinsic factors of food composition as well as extrinsic factors such as storage temperature. The antimicrobial and antioxidant activities of EOs are a result of the presence of phenolic components at high concentrations. EOs could have better effectiveness than single component because these constitutes could act additively or even synergistically in EOs. EOs have antimicrobial activity against wide range of microorganisms and their mode of action is related to disintegration of cellular membrane integrity followed by inactivation of other microbial cells components. The antioxidant mode of action for EOs is related to neutralization free radicals and peroxide decomposition in particularly when tested in meat, dairy, fruits and vegetables. The high effectiveness of EOs indicates that they could replace the synthetic food additives. This scientific review summarizes the most recent studies about effectiveness of EOs as antimicrobial and antioxidant agents to be used in food industry.

Author Biographies

Doaa Al-Refaie , The University of Jordan, Amman, Jordan

Department of Nutrition and Food Technology, Faculty of Agriculture, The University of Jordan, Amman, Jordan

Ghadeer F. Mehyar , Faculty of Agriculture, The University of Jordan, Amman, Jordan

Department of Nutrition and Food Technology, Faculty of Agriculture, The University of Jordan, Amman, Jordan

Mohammad Shahein, Faculty of Agriculture, The University of Jordan, Amman, Jordan

Department of Nutrition and Food Technology, Faculty of Agriculture, The University of Jordan, Amman, Jordan


Ahmed, A. F., Attia, F. A., Liu, Z., Li, C., Wei, J., and Kang, W. (2019). Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L.) plants. Food Science and Human Wellness, 8(3), 299-305.‏ DOI:

Allenspach, M. D., Valder, C., and Steuer, C. (2020). Absolute quantification of terpenes in conifer-derived essential oils and their antibacterial activity. Journal of Analytical Science and Technology, 11(1), 1-10.‏ DOI:

Ameh, S. J., and Obodozie-Ofoegbu, O. (2016). Essential oils as flavors in carbonated cola and citrus soft drinks. In Essential Oils in Food Preservation, Flavor and Safety (pp. 111-121). Academic Press.‏ DOI:

Amorati, R., Foti, M. C., and Valgimigli, L. (2013). Antioxidant activity of essential oils. Journal of Agricultural and Food Chemistry, 61(46), 10835-10847.‏ DOI:

Antal, T., Chong, C. H., Law, C. L., and Sikolya, L. (2014). Effects of freeze drying on retention of essential oils, changes in glandular trichomes of lemon balm leaves. International Food Research Journal, 21(1), 387.‏

Anupama, G., Netravathi, D. K., and Avinash, M. (2019). Essential oils: A novel source for food preservation. Journal of Pharmacognosy and Phytochemistry, 8(1), 2098-2101.‏

Araujo, C. F. (2019). Efecto antimicrobiano de aceitesesenciales de orégano (Origanum vulgare) y tomillo (Thymus vulgare) individuales y encombinación contra Salmonella Typhimurium.‏ MScThesis. Zamorano, Honduras.

Badawy, M. E., Marei, G. I. K., Rabea, E. I., and Taktak, N. E. (2019). Antimicrobial and antioxidant activities of hydrocarbon and oxygenated monoterpenes against some foodborne pathogens through in vitro and in silico studies. Pesticide Biochemistry and Physiology, 158, 185-200.‏ DOI:

Başer K.H.C. and F Demirci (2007), Chemistry of essential oils. Flavours and Fragrances: Chemistry, Bioprocessing and Sustainability, edited by Berger RG. New York: Springer 2007: 43-86.

Ben-Hsouna, A., Ben Halima, N., Smaoui, S., and Hamdi, N. (2017). Citrus lemon essential oil: Chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat. Lipids in Health and Disease, 16(1), 1-11.‏ DOI:

Benabdelkader, T., Zitouni, A., Guitton, Y., Jullien, F., Maitre, D., Casabianca, H., and Kameli, A. (2011). Essential oils from wild populations of Algerian Lavandula stoechas L.: composition, chemical variability, and in vitro biological properties. Chemistry and Biodiversity, 8(5), 937-953. DOI:

Bhargava, K., Wang, X., Donabedian, S., Zervos, M., da Rocha, L., and Zhang, Y. (2011). Methicillin-resistant Staphylococcus aureus in retail meat, Detroit, Michigan, USA. Emerging Infectious Diseases, 17(6), 1135 DOI:

Bhavaniramya, S., Vishnupriya, S., Al-Aboody, M. S., Vijayakumar, R., and Baskaran, D. (2019). Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain and Oil science and Technology, 2(2), 49-55.‏ DOI:

Boskovic, M., Zdravkovic, N., Ivanovic, J., Janjic, J., Djordjevic, J., Starcevic, M., and Baltic, M. Z. (2015). Antimicrobial activity of thyme (Tymus vulgaris) and oregano (Origanum vulgare) essential oils against some food-borne microorganisms. Procedia Food Science, 5, 18-21.‏ DOI:

Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223-253.‏ DOI:

Burt, S. A., van der Zee, R., Koets, A. P., de Graaff, A. M., van Knapen, F., Gaastra, W., and Veldhuizen, E. J. (2007). Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157: H7. Applied and Environmental Microbiology,73(14), 4484-4490. DOI:

Chaieb, K., Hajlaoui, H., Zmantar, T., Kahla‐Nakbi, A. B., Rouabhia, M., Mahdouani, K., and Bakhrouf, A. (2007). The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 21(6), 501-506.‏ DOI:

Chao, S. C., Young, D. G., and Oberg, C. J. (2000). Screening for inhibitory activity of essential oils on selected bacteria, fungi and viruses. Journal of Essential Oil Research, 12(5), 639-649.‏ DOI:

Cherif, A., Ammar, S., and Boukhchina, S. (2019). Composition and characterization by GC-MS of the essential oil extracted from Nicotianaglauca Graham. Grasas y Aceites, 70(3), e317-e317.‏ DOI:

Chouhan, S., Sharma, K., and Guleria, S. (2017). Antimicrobial activity of some essential oils—present status and future perspectives. Medicines, 4(3), 58. DOI:

Churklam, W., Chaturongakul, S., Ngamwongsatit, B., andAunpad, R. (2020). The mechanisms of action of carvacrol and its synergism with nisin against Listeria monocytogenes on sliced bologna sausage. Food Control, 108, 106864.‏ DOI:

Clemente, I., Aznar, M., Silva, F., and Nerín, C. (2016). Antimicrobial properties and mode of action of mustard and cinnamon essential oils and their combination against foodborne bacteria. Innovative Food Science and Emerging Technologies, 36, 26-33.‏ DOI:

Conde-Hernández, L. A., Espinosa-Victoria, J. R., Trejo, A., and Guerrero-Beltrán, J. Á. (2017). CO2-supercritical extraction, hydrodistillation and steam distillation of essential oil of rosemary (Rosmarinus Officinalis). Journal of Food Engineering, 200, 81-86.‏ DOI:

Constanza, K., Tallury, S., Whaley, J., Sanders, T., and Dean, L. (2015). Chemical composition of the essential oils from leaves of edible (Arachis hypogaea L.) and Perennial (Arachisglabrata Benth.) peanut plants. Journal of Essential Oil Bearing Plants, 18(3), 605-612.‏ ‏ DOI:

Debonne, E., Van Bockstaele, F., Samapundo, S., Eeckhout, M., and Devlieghere, F. (2018). The use of essential oils as natural antifungal preservatives in bread products. Journal of Essential Oil Research, 30(5), 309-318.‏ DOI:

Delgado-Pando, G., Ekonomou, S. I., Stratakos, A. C., and Pintado, T. (2021). Clean Label Alternatives in Meat Products. Foods, 10(7), 1615.‏ DOI:

Demuner, A. J., Almeida Barbosa, L. C., Gonçalves Magalhaes, C., Da Silva, C. J., Alvares Maltha, C. R., and LelisPinheiro, A. (2011). Seasonal variation in the chemical composition and antimicrobial activity of volatile oils of three species of Leptospermum (Myrtaceae) grown in Brazil. Molecules, 16(2), 1181-1191.‏ DOI:

Ebani, V. V., Nardoni, S., Bertelloni, F., Giovanelli, S., Rocchigiani, G., Pistelli, L., and Mancianti, F. (2016). Antibacterial and antifungal activity of essential oils against some pathogenic bacteria and yeasts shed from poultry. Flavour and Fragrance Journal, 31(4), 302-309.‏ DOI:

Erland, L. A., and Mahmoud, S. S. (2016). Lavender (Lavandula angustifolia) oils. Essential oils in food preservation, Flavor and Safety, 501-508.‏ DOI:

Fasihi, H., Noshirvani, N., Hashemi, M., Fazilati, M., Salavati, H., and Coma, V. (2019). Antioxidant and antimicrobial properties of carbohydrate-based films enriched with cinnamon essential oil by Pickering emulsion method. Food Packaging and Shelf Life, 19, 147-154.‏ DOI:

Filly, A., Fabiano-Tixier, A. S., Louis, C., Fernandez, X., and Chemat, F. (2016). Water as a green solvent combined with different techniques for extraction of essential oil from lavender flowers. Comptes Rendus Chimie, 19(6), 707-717.‏ DOI:

Golmohammadi, M., Borghei, A., Zenouzi, A., Ashrafi, N., and Taherzadeh, M. J. (2018). Optimization of essential oil extraction from orange peels using steam explosion. Heliyon, 4(11), e 00893.‏ DOI:

Handa, S. S. (2008). An overview of extraction techniques for medicinal and aromatic plants. Extraction Technologies for Medicinal and Aromatic Plants, 1, 21-40.‏

Harzallah, H. J., Kouidhi, B., Flamini, G., Bakhrouf, A., and Mahjoub, T. 2011. Chemical composition, antimicrobial potential against cariogenic bacteria and cytotoxic activity of Tunisian Nigella sativa essential oil and thymo quinone. Food Chemistry, 129(4), 1469-1474. DOI:

Hashemi, S. M. B., Khorram, S. B., and Sohrabi, M. (2017). Antioxidant activity of essential oils in foods. Essential oils in Food Processing: Chemistry, Safety and Applications, 247-265.‏ DOI:

Heer, A., Guleria, S., and Razdan, V. K. (2017). Chemical composition, antioxidant and antimicrobial activities and characterization of bioactive compounds from essential oil of Cinnamomum tamala grown in north-western Himalaya. Journal of Plant Biochemistry and Biotechnology, 26(2), 191-198. DOI:

Herman, R. A., Ayepa, E., Shittu, S., Fometu, S. S., and Wang, J. (2019). Essential oils and their applications-a mini review. Advanced Nutritional and Food Science. 4(4), 1-13.

Hyldgaard, M., Mygind, T., and Meyer, R. L. (2012). Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology, 3, 12.‏ DOI:

Jafri, H., Ansari, F. A., and Ahmad, I. (2019). Prospects of essential oils in controlling pathogenic biofilm. In: New Look to Phytomedicine (pp. 203-236). Academic Press.‏ DOI:

Ji, J., Shankar, S., Royon, F., Salmieri, S., and Lacroix, M. (2021). Essential oils as natural antimicrobials applied in meat and meat products—A review. Critical Reviews in Food Science and Nutrition, 1-17.‏ DOI:

Juliano, C., Mattana, A., and Usai, M. (2000). Composition and in vitro antimicrobial activity of the essential oil of Thymus herba-barona growing wild in Sardinia. Journal of Essential Oil Research, 12(4), 516-522.‏ DOI:

Kang, J., Jin, W., Wang, J., Sun, Y., Wu, X., and Liu, L. (2019). Antibacterial and anti-biofilm activities of peppermint essential oil against Staphylococcus aureus. LWT-Food Science and Technology, 101, 639-645.‏ DOI:

Kaur, R., Gupta, T. B., Bronlund, J., and kaur, l. (2021). The potential of rosemary as a functional ingredient for meat products-a review. Food Reviews International, 1-21.‏ DOI:

Kayode, R. M., Azubuike, C. U., Laba, S. A., Dauda, A. O., Balogun, M. A., and Ajala, S. A. (2018). Chemical composition and anti-microbial activities of the essential oil of Adansonia digitata stem-bark and leaf on post-harvest control of tomato spoilage. LWT-Food Science and Technology, 93, 58-63.‏ DOI:

Khan, M. A., Khan, T., and Ali, H. (2019). Plant cell culture strategies for the production of terpenes as green solvents. Biotechnological Production of Bio-active Natural Products, In: Industrial Applications of Green Solvents Publisher: Materials Research Forum LLC. 50, 1-20.‏ DOI:

Kokoska, L., Kloucek, P., Leuner, O., and Novy, P. (2019). Plant-derived products as antibacterial and antifungal agents in human health care. Current Medicinal Chemistry, 26(29), 5501-5541.‏ DOI:

Kozelová, D., Mura, L., Matejková, E., Lopašovský, Ľ., Vietoris, V., Mendelová, A and Chreneková, M. (2011). Organic products, consumer behavior on market and european organic product market situation. Potravinarstvo Slovak Journal of Food Sciences, 5(3), 20-26.‏ DOI:

Liang, J. Y., Ning, A. Q., Lu, P. Y., Shao, Y. Z., Xu, J., Yang, Y. Y., and Wang, H. L. (2020). Chemical composition and biological activity of essential oil extracted from the aerial part of Elsholtzia fruticosa against Ditylenchus destructor. Journal of Essential Oil Bearing Plants, 23(3), 575-582.‏ DOI:

Lou, Z., Chen, J., Yu, F., Wang, H., Kou, X., Ma, C., and Zhu, S. (2017). The antioxidant, antibacterial, antibiofilm activity of essential oil from Citrus Medica L. var. Sarcodactylis and its nanoemulsion. LWT-Food Science and Technology, 80, 371-377.‏ DOI:

Manso, S., Pezo, D., Gómez-Lus, R., and Nerín, C. (2014). Diminution of aflatoxin B1 production caused by an active packaging containing cinnamon essential oil. Food Control, 45, 101-108.‏ DOI:

Marchese, A., Barbieri, R., Coppo, E., Orhan, I. E., Daglia, M., Nabavi, S. F., and Ajami, M. (2017). Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Critical Reviews in Microbiology, 43(6), 668-689.‏ DOI:

Marín, I., Sayas-Barberá, E., Viuda-Martos, M., Navarro, C., and Sendra, E. (2016). Chemical composition, antioxidant and antimicrobial activity of essential oils from organic fennel, parsley, and lavender from Spain. Foods, 5(1), 18.‏ DOI:

Martínez-Ávila, G. C., Aguilar-Zarate, P., and Rojas, R. (2021). Currently Applied Extraction Processes for Secondary Metabolites from Lippia turbinata and Turnera diffusa and Future Perspectives. Separations, 8(9), 158.‏ DOI:

Mehyar, G. F. and Richard Holley (2018). Active Packaging and non-Thermal Processing. In Packaging for Nonthermal Processing of Food, 2nd Edition. Wiley-Blackwell, West Sussex, UK. P 15- 41. DOI:

Mejlholm, O., and Dalgaard, P. (2002). Antimicrobial effect of essential oils on the seafood spoilage micro‐organism Photobacterium phosphoreum in liquid media and fish products. Letters in Applied Microbiology, 34(1), 27-31.‏ DOI:

Mishra, A. P., Devkota, H. P., Nigam, M., Adetunji, C. O., Srivastava, N., Saklani, S and Khaneghah, A. M. (2020). Combination of essential oils in dairy products: A review of their functions and potential benefits. LWT-Food Science and Technology,133, 110116.‏ DOI:

Molapour, S., Shabkhiz, R., Askari, O., Shiri, H., Keramati, A., and Mahdavi, V. (2020). Chemical components and insecticidal effects of Lavandula angustifolia and Origanum vulgare essential oils on the growth different stages of Habrobracon hebetor Say (Hymenoptera: Braconidae). Jordan Journal of Biological Sciences Short Communication, 13(2).‏

Mutlu-Ingok, A., Devecioglu, D., Dikmetas, D. N., Karbancioglu-Guler, F., and Capanoglu, E. 2020. Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An updated review. Molecules, 25(20), 4711.‏ DOI:

Nazari, M., Ghanbarzadeh, B., Kafil, H. S., Zeinali, M., and Hamishehkar, H. (2019). Garlic essential oil nanophytosomes as a natural food preservative: Its application in yogurt as food model. Colloid and Interface Science Communications, 30, 100176.‏ DOI:

Nazir, F., Salim, R., Yousf, N., Bashir M, N. H., and Hussain, S. Z. (2017). Natural antimicrobials for food preservation. Journal of Pharmacognosy and Photochemistry, 6(6), 2078-82.‏

Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., and De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12), 1451-1474.‏ DOI:

Neuenschwander, U., Guignard, F., and Hermans, I. (2010). Mechanism of the Aerobic Oxidation of α‐Pinene. Chem Sus Chem: Chemistry and Sustainability Energy and Materials, 3(1), 75-84.‏ DOI:

Nielsen, B., Colle, M. J., and Ünlü, G. (2021). Meat safety and quality: a biological approach. International Journal of Food Science and Technology, 56(1), 39-51. DOI:

Nollet, L. M., and Rathore, H. S. (Eds.). (2017). Green pesticides handbook: Essential oils for pest control. CRC Press.‏ DOI:

Ozogul, Y., Boğa, E. K., Akyol, I., Durmus, M., Ucar, Y., Regenstein, J. M., and Köşker, A. R. (2020). Antimicrobial activity of thyme essential oil nanoemulsions on spoilage bacteria of fish and food-borne pathogens. Food Bioscience, 36, 100635.‏ DOI:

Paibon, W., Yimnoi, C. A., Tembab, N., Boonlue, W., Jampachaisri, K., Nuengchamnong, N and Ingkaninan, K. (2011). Comparison and evaluation of volatile oils from three different extraction methods for some Thai fragrant flowers. International Journal of Cosmetic Science, 33(2), 150-156. DOI:

Patel, P. N., Patel, K. M., Chaudhary, D. S., Parmar, K. G., Patel, H. A., Kansagra, C. D., and Sen, D. J. (2011). Extraction of herbal aroma oils from solid surface. International Journal of Comprehensive Pharmacy, 9(2), 1-10.‏

Patel, S. (2015). Plant essential oils and allied volatile fractions as multifunctional additives in meat and fish-based food products: a review. Food Additives and Contaminants: Part A. 32 (7), 2015 DOI:

Pauli, A., and Kubeczka, K. H. (2010). Antimicrobial properties of volatile phenylpropanes. Natural product communications, 5(9), 1934578-1000500910.‏ DOI:

Pauli, G. F., Case, R. J., Inui, T., Wang, Y., Cho, S., Fischer, N. H., and Franzblau, S. G. (2005). New perspectives on natural products in TB drug research. Life Sciences, 78(5), 485-494.‏ DOI:

Pereira, T. S., de Sant'Anna, J. R., Silva, E. L., Pinheiro, A. L., and de Castro-Prado, M. A. A. (2014). In vitro genotoxicity of Melaleuca alternifolia essential oil in human lymphocytes. Journal of Ethnopharmacology, 151(2), 852-857. DOI:

Pisoschi, A. M., Pop, A., Georgescu, C., Turcuş, V., Olah, N. K., andMathe, E. (2018). An overview of natural antimicrobials role in food. European Journal of Medicinal Chemistry, 143, 922-935.‏ DOI:

Porter, J. A., and Monu, E. A. (2019). Evaluating the antimicrobial efficacy of white mustard essential oil alone and in combination with thymol and carvacrol against Salmonella. Journal of food protection, 82(12), 2038-2043.‏ DOI:

Posadzki, P., Alotaibi, A., and Ernst, E. (2013). Adverse effects of aromatherapy: a systematic review of case reports and case series. Journal of the Australian-Traditional Medicine Society, 19(4), 246.‏‏

Radünz, M., da Trindade, M. L. M., Camargo, T. M., Radünz, A. L., Borges, C. D., Gandra, E. A., and Helbig, E. (2019). Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food Chemistry, 276, 180-186.‏ DOI:

Rashid, S., Rather, M. A., Shah, W. A., and Bhat, B. A. (2013). Chemical composition, antimicrobial, cytotoxic and antioxidant activities of the essential oil of Artemisia indica Willd. Food chemistry, 138(1), 693-700.‏ DOI:

Reyes-Jurado, F., Franco-Vega, A., Ramírez-Corona, N., Palou, E., and López-Malo, A. (2015). Essential oils: antimicrobial activities, extraction methods, and their modeling. Food Engineering Reviews, 7(3), 275-297.‏ DOI:

Ribeiro, A. M., Estevinho, B. N., and Rocha, F. (2021). Preparation and incorporation of functional ingredients in edible films and coatings. Food and Bioprocess Technology, 14(2), 209-231.‏ DOI:

Roller, S., and Seedhar, P. (2002). Carvacrol and cinnamic acid inhibit microbial growth in fresh‐cut melon and kiwi fruit at 4 and 8 C. Letters in Applied Microbiology, 35(5), 390-394.‏ DOI:

Sadekuzzaman, M., Mizan, M. F. R., Kim, H. S., Yang, S., and Ha, S. D. (2018). Activity of thyme and tea tree essential oils against selected foodborne pathogens in biofilms on abiotic surfaces. LWT-Food Science and Technology, 89, 134-139.‏ DOI:

Saharkhiz, M. J., Motamedi, M., Zomorodian, K., Pakshir, K., Miri, R., and Hemyari, K. (2012). Chemical composition, antifungal and antibiofilm activities of the essential oil of Mentha piperita L. International Scholarly Research Notices, 2012.‏ Article ID 718645. DOI:

Said, A., L., Zahlane, K., Ghalbane, I., El Messoussi, S., Romane, A., Cavaleiro, C., and Salgueiro, L. (2015). Chemical composition and antibacterial activity of Lavandula coronopifolia essential oil against antibiotic-resistant bacteria. Natural Product Research, 29(6), 582-585. DOI:

Said, Z. B. O. S., Haddadi-Guemghar, H., Boulekbache-Makhlouf, L., Rigou, P., Remini, H., Adjaoud, A., and Madani, K. (2016). Essential oils composition, antibacterial and antioxidant activities of hydrodistillated extract of Eucalyptus globulus fruits. Industrial Crops and Products, 89, 167-175.‏ DOI:

Sari, E., Berczynski, P., Kladna, A., Kruk, I., Dundar, O. B., Szymanska, M., and Aboul-Enein, H. Y. (2018). Synthesis and in vitro antioxidant activity study of some novel substituted piperazinyl flavone compounds. Medicinal Chemistry, 14(4), 372-386.‏ DOI:

Shaaban, H. A. (2020). Essential Oil as Antimicrobial Agents: Efficacy, Stability, and Safety Issues for Food Application. Essential Oils-Bioactive Compounds, New Perspectives and Applications, 1-33.‏ DOI:

Shahidi, F., and Zhong, Y. (2015). Measurement of antioxidant activity. Journal of Functional Foods, 18, 757-781.‏ DOI:

Singh, N., Singh, R. K., Bhunia, A. K., and Stroshine, R. L. (2002). Efficacy of chlorine dioxide, ozone, and thyme essential oil or a sequential washing in killing Escherichia coli O157: H7 on lettuce and baby carrots. LWT-Food Science and Technology, 35(8), 720-729.‏ DOI:

Skandamis, P. N., and Nychas, G. J. (2001). Effect of oregano essential oil on microbiological and physico‐chemical attributes of minced meat stored in air and modified atmospheres. Journal of Applied Microbiology, 91(6), 1011-1022.‏ DOI:

Stephane, F. F. Y., and Juleshttps, B. K. J. (2020). Terpenoids as important bioactive constituents of essential oils. In Essential Oils-Bioactive Compounds, New Perspectives and Applications. Intech Open. DOI: 10.5772/intechopen.91426. DOI:

Tahlan, V. (2014). Antimicrobial Activity of Essential Oil Emulsions and Possible Synergistic Effect On Food Borne Pathogens. ‏ Wayne State University Theses.

Toauibia, M. (2015). Antimicrobial activity of the essential oil of Myrtus communis L berries growing wild in Algeria. Journal of Fundamental and Applied Sciences, 7(2), 150-162. DOI:

Tongnuanchan P and S Benjakul (2014) Essential oils: extraction, bioactivities, and their uses for food preservation. Journal of Food Science, 79: R1231-R1249. DOI:

Tyagi, A. K., and Malik, A. (2011). Antimicrobial potential and chemical composition of Eucalyptus globulus oil in liquid and vapour phase against food spoilage microorganisms. Food Chemistry, 126(1), 228-235.‏ DOI:

Ultee, A., Bennik, M. H. J., and Moezelaar, R. J. A. E. M. (2002). The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Applied and Environmental Microbiology, 68(4), 1561-1568.‏ DOI:

Van Haute, S., Raes, K., Van Der Meeren, P., and Sampers, I. (2016). The effect of cinnamon, oregano and thyme essential oils in marinade on the microbial shelf life of fish and meat products. Food Control, 68, 30-39.‏ DOI:

Végh, A., Bencsik, T., Molnár, P., Böszörményi, A., Lemberkovics, É., Kovács, K., and Horváth, G. (2012). Composition and antipseudomonal effect of essential oils isolated from different lavender species. Natural Product Communications, 7(10), 1934578X1200701039.‏ DOI:

Vergis, J., Gokulakrishnan, P., Agarwal, R. K., and Kumar, A. (2015). Essential oils as natural food antimicrobial agents: a review. Critical Reviews in Food Science and Nutrition, 55(10), 1320-1323.‏ DOI:

Vital, A. C. P., Guerrero, A., Monteschio, J. D. O., Valero, M. V., Carvalho, C. B., de Abreu Filho, B. A., and do Prado, I. N. (2016). Effect of edible and active coating (with rosemary and oregano essential oils) on beef characteristics and consumer acceptability. PLOS one, 11(8), e0160535. DOI:

Xing, T., Gao, F., Tume, R. K., Zhou, G., and Xu, X. (2019). Stress effects on meat quality: a mechanistic perspective. Comprehensive Reviews in Food Science and Food Safety, 18(2), 380-401.‏ DOI:

Yousefi, M., Khorshidian, N., and Hosseini, H. (2020). Potential application of essential oils for mitigation of Listeria monocytogenes in meat and poultry products. Frontiers in Nutrition, 7, 255.‏ DOI:

Zhong, Y., and Shahidi, F. (2012). Lipophilised epigallocatechin gallate (EGCG) derivatives and their antioxidant potential in food and biological systems. Food Chemistry, 131(1), 22-30.‏ DOI:

Zuzarte, M., Gonçalves, M. J., Cruz, M. T., Cavaleiro, C., Canhoto, J., Vaz, S and Salgueiro, L. (2012). Lavandul aluisieri essential oil as a source of antifungal drugs. Food Chemistry, 135(3), 1505-1510.‏ DOI:




How to Cite

Al-Refaie , D. ., Mehyar , G. F. ., & Shahein, M. . (2023). Functional Role of Essential Oils as Antimicrobial and Antioxidat Agents in Food Industry: A Review. Jordan Journal of Agricultural Sciences, 19(1), 70–88.