تعزيز نمو نبات الأرز المستدام بواسطة البكتيريا المعزولة من تربة الجذور

المؤلفون

DOI:

https://doi.org/10.35516/jjas.v20i2.1053

الكلمات المفتاحية:

IAA، PGPR، PSB، ريزوسفير، الفاصولياء

الملخص

في هذه الدراسة تم جمع وتشخيص ستة عشر عزلة بكتيرية من تربة الجذور لنبات الفاصوليا (Phaseolus vulgaris)، سميت من BB-1 إلى BB-16. من بين العزلات البكتيرية الستة عشر، أظهرت ست عزلات نشاطًا إيجابيًا لقدرة إذابة الفوسفات، وثلاث عزلات بكتيرية إيجابية لإنتاج الأمونيا، وستة عزلات بكتيرية إيجابية لإنتاج حمض الإندول أسيتيك (IAA)، وثلاث عزلات بكتيرية قادرة على إذابة البوتاس، وثلاث عزلات بكتيرية أنتجت السليوليز. أظهرت ستة عزلات بكتيرية إيجابية لإنزيم الكيتيناز، وخمسة منها إيجابية للأميليز وأربع عزلات بكتيرية إيجابية لنشاط الأنزيم البروتيني. وقد لوحظ إنتاج سيانيد الهيدروجين (HCN) بواسطة العزلات البكتيرية BB-7 فقط. كانت الممرضات الفطرية مثل Aspergillus terreus و Penicillium Rubidurum مقاومة لمعظم العزلات البكتيرية، في حين أظهرت العزلة البكتيرية BB-3 حساسية ضد Penicillium Rubidurum. كانت قدرتها الكمية على إذابة الفوسفات في حدود 47.5-77.8 ميكروغرام/مل، وكان إنتاج الأمونيا بين 2.45-3.45 ملغ/لتر، وكان إنتاج 22.5-29.5 IAA ميكروغرام/مل. من بين العزلات البكتيرية الستة عشر، كانت عزلة بكتيرية واحدة، BB-7، إيجابية بالنسبة لمعظم الاختبارات وتم تحديدها على أنها Pantoea agglomerans. اظهرت العزلة نشاطا معززا لنمو النباتات مقارنة مع نبات الأرز الضابط، حيث حققت نموا أعلى للجذور والبراعم في أصيص الأرز الملقّح بمزرعة P. agglomerans..

التنزيلات

بيانات التنزيل غير متوفرة بعد.

السير الشخصية للمؤلفين

Bikash Behera، MITS school of Biotechnology, India

Department of Biotechnology, MITS School of Biotechnology, Odisha-751024, India

Kumudini Mahto، MITS School of Biotechnology, India

Research Scholar

Department of Biotechnology

S. K. Dash Center of Excellence of Biosciences and Engineering & Technology, Indian Institute of Technology, Bhubaneswar-752050, India

Saikh Md Awesh Azam، MITS School of Biotechnology, India

Research Scholar

Department of Biotechnology, MITS School of Biotechnology

Rashmi Ranjan Mishra، MITS School of Biotechnology, India

Assistant Professor

Department of Biotechnology, MITS School of Biotechnology

Bijay Kumar Sethi، MITS School of Biotechnology, India

Assistant Professor

Department of Biotechnology, MITS School of Biotechnology

Biswaranjan Pradhan، S. K. Dash Center of Excellence of Biosciences and Engineering & Technology, Indian Institute of Technology, Bhubaneswar

Research Scientist

S. K. Dash Center of Excellence of Biosciences and Engineering & Technology, Indian Institute of Technology, Bhubaneswar

Santosh Kumar Singh، ARKA JAIN University, Jamshedpur – 831001, India

 Assistant Professor

Department of Biotechnology, School of Health and Allied Sciences, ARKA JAIN University, Jamshedpur – 831001, India

Tapaswini Hota، Department of Biotechnology, Academy of Management & Information Technology, Khordha

Assistant Professor

Department of Biotechnology, Academy of Management & Information Technology, Khordha

Harishankar Dey، Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, India

Assistant Professor

Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara

المراجع

Abd El-Mageed, T.A., Abd El-Mageed, S.A., El-Saadony, M.T., Abdelaziz S., Abdou N.M. (2022). Plant Growth-Promoting Rhizobacteria Improve Growth, Morph-Physiological Responses, Water Productivity, and Yield of Rice Plants Under Full and Deficit Drip Irrigation. Rice, 15, 16. https://doi.org/10.1186/s12284-022-00564-6

Abusham, R.A., Rahman, R.N.Z.R.A., Salleh, A.B., & Basri, M. (2009). Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant protease from a newly isolated halo-tolerant Bacillus subtilis strain Rand. Microbial Cell Factory, 8, 1-9.

Ahmad, F., Ahmad, I., & Khan, M.S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth-promoting activities. Microbiological Research, 163, 173-181.

Ahmed, B., Zaidi, A., Khan, M.S., Rizvi, A., Saif, S., & Shahid, M. (2017). Perspectives of plant growth promoting rhizobacteria in growth enhancement and sustainable production of tomato. In: Microbial strategies for vegetable production. Springer, 125–49.

Aliyat, F.Z., Maldani, M. El., Guilli, M., Nassiri, L., & Ibijbijen, J. (2022). Phosphate-Solubilizing Bacteria Isolated from Phosphate Solid Sludge and Their Ability to Solubilize Three Inorganic Phosphate Forms: Calcium, Iron, and Aluminum Phosphates. Microorganisms, 10, 980. https://doi.org/10.3390/ microorganisms10050980

Aloo, B.N., Makumba, B.A., & Mbega, E.R. (2019). The potential of bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiological Research, 219, 26–39.

Ambrosini, A., De Souza, R., and Passaglia, L. M. P. (2016). Ecological role of bacterial inoculants and their potential impact on soil microbial diversity. Plant Soil, 400, 193–207. doi: 10.1007/s11104-015-2727-7

American Public Health Association (APHA) (1975). American Water Works Association, and Water Pollution Control Federation, Standard Methods for the Examination of Water and Wastewater, 14th edition, 1975.

Asmerom, D., Kalay, T.H., & Tafere, G.G. (2020). Antibacterial and Antifungal Activities of the Leaf Exudate of Aloe megalacantha Baker. International Journal of Microbiology, 2020, 1-6. https://doi.org/10.1155/2020/8840857

Arsita, R., Karim, H., Hala, Y., Iriany, N., & Jumadi, O. (2020). Isolation and identification of nitrogen-fixing bacteria in the corn rhizosphere (Zea mays l.) originating from Jeneponto Regency, South Sulawesi. IOP Conf Series: Earth and Environmental Science, 484 (2020) 012051 IOP Publishing doi:10.1088/1755-1315/484/1/012051

Audipudi, A.V., Kumar, N.P., & Sudhir, A. (2012). Phosphate solubilizing mangrove associated with Chollangi mangrove soil in Southeast coast of India. International Journal of Scientific and Engineering Research, 3(11). 1-9.

Baldani, J.I., Baldani, V.L.D., Seidin, L., & Döbereiner, J. (1986). Characterization ofHerbaspirillumseropedicae gen. nov., a root-associated nitrogen-fixing bacterium. International Journal of Systematic Bacteriology, 36, 86-93.

Behera, B.C., Parida, S., Dutta, S.K., and Thatoi, H.N. (2014). Isolation and Identification of Cellulose Degrading Bacteria from Mangrove Soil of Mahanadi River Delta and Their Cellulase Production Ability. American Journal of Microbiological Research, 2, 41-46.

Behera, B.C., Yadav, H., Singh, S.K., Mishra, R.R., Sethi, B.K., Dutta, S.K., & Thatoi, H.N. (2017). Phosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, India. Journal of Genetic Engineering and Biotechnology, 15, 169-178.

Bhattacharyya, C., Banerjee, S., Acharya, U., Mitra, A., Mallick, I., Halder, A., Halder, S., Ghosh, A., & Ghosh, A. (2020). Evaluation of plant growth promotion properties and induction of antioxidative defense mechanism by tea rhizobacteria of Darjeeling, India. Scientific Report, 10, 15536. https://doi.org/10.1038/s41598-020-72439-z

Buchanan, R.E., & Gibbons, N.E. (1974). Bergey’s manual of determinative bacteriology. 8th ed. Baltimore (MD): The Williams and Wilkins Co. p. 747–842.

Chandra, S., Askari, K., & Kumari, M. (2018). Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth. Journal of Genetic Engineering & Biotechnology, 16, 581-586. doi: 10.1016/j.jgeb.2018.09.001.

Duarah, I., Deka, M., Saikia, N., & Deka Boruah, H.P. (2011). Phosphate solubilizers enhance NPK fertilizer use efficiency in rice and legume cultivation. 3 Biotech, 1, 227–38. doi: 10.1007/s13205-011-0028-2

Etesami, H., Emami, S., & Alikhani, H.A. (2017). Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and prospects - a review. Journal of Soil Science and Plant Nutrition, 17, 897-911.

Glick, B.R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41, 109–117.

Gothwal, R.K., Nigam, V.K., Mohan, M.K., Samal, D., & Ghosh, P. (2008). Screening of nitrogen fixers from rhizospheric bacterial isolates associated with important desert plants. Applied ecology and environmental research, 6, 101-109.

Harman, G., Khadka, R., Doni, F., & Uphoff, N. (2021). Benefits to plant health and productivity from enhancing plant microbial symbionts. Frontier in Plant Science, 2021;11:610065. doi: 10.3389/fpls.2020.610065.

Hilda, R., & Fraga, R. (2000). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17, 319-359.

Hussain, Z., Khattak, R.A., Irshad, M., Mahmood, Q., & An, P. (2016). Effect of saline irrigation water on the leachability of salts, growth, and chemical composition of wheat (Triticum aestivum L.) in saline-sodic soil supplemented with phosphorus and potassium. Journal of soil Science & Plant Nutrition, 16, 604-620.

Illmer, P., & Schinner, F. (1995). Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil Biology and Biochemistry, 27, 257-263.

Ishak, I., Ardyati, T., & Aini, L.Q. (2018). Screening of Rhizosphere Bacteria from Clove (Syzygiumaromaticum) in Tidore Island as Plant Growth Promoting Rhizobacteria. Journal of Experimental Life Science, 8,153-160.

Jadhav, H., & Sayyed, R. (2016). Hydrolytic enzymes of rhizospheric microbes in crop protection. MOJ Cell Science Report, 3,1–2.

Jalan, R., Pradhan, B., Singh, S.K., Das, A., Barik, R.L., Meher, J., Mishra, R.R., Dubey, D., & Behera, B.C. (2022). Isolation and Identification of Antibacterial compound from Actinomycetes isolated from Mangrove soil. Research Journal of Pharmacy and Technology, 15, 1-6.

Kahkahi, R.E., Moustaine, M., Mouhajir, A., Zouhair, R., Chitt, M.A., & Errakhi, R. (2021). Characterization and Identification of Plant Growth Promoting Traits of a Rhizobacteria: Pantoea Agglomerans. Austin Journal of Microbiology, 6, 1032.

Kanamori, K., Weiss, R. L., & Roberts, J. D. (1989). Ammonia assimilation pathways in nitrogen-fixing Clostridium kluyverii and Clostridium butyricum. Journal of Bacteriology, 171, 2148–2154.

Kang, S.M., Bilal, S., Shahzad, R., Kim, Y.N., Park, C.W., Lee, K.E., Lee, J.R., & Lee, I.J. (2020). Effect of Ammonia and Indole-3-acetic Acid Producing Endophytic Klebsiellapneumoniae YNA12 as a Bio-Herbicide for Weed Inhibition: Special Reference with Evening Primroses. Plants, 9,761. https://doi.org/10.3390/plants9060761

Kloepper, J.W., Reddy, M.S., Rodríguez-Kabana, R., Kenney, D.S., Kokalis-Burelle, N., Martinez-Ochoa, N., & Vavrina, C.S. (2002). Application for rhizobacteria in transplant production and yield enhancement. Proceedings of the XXVIInternational Horticultural Congress: Issues and advances intransplant production and stand establishment research, Toronto, Canada, 128–136.

Luziatelli, F., Ficca, A.G., Cardarelli, M.T., Melini, F., Cavalieri, A., & Ruzzi, M. (2020). Genome sequencing of Pantoea agglomerans C1 provides insights into molecular and genetic mechanisms of plant growth promotion and tolerance to heavy metals. Microorganisms, 8, 153. doi: 10.3390/ microorganisms8020153

Mazumdar, D., Saha, S.P., & Ghosh, S. (2019). Isolation, screening, and application of a potent PGPR for enhancing growth of Chickpea as affected by nitrogen level. International Journal of Vegetable Science, 26, 333-350.

Mekonnen, H., & Kibert, M. (2021). The roles of plant growth promoting rhizobacteria in sustainable vegetable production in Ethiopia. Chemical and Biological. Technologies in Agriculture, 8, 15. https://doi.org/10.1186/s40538-021-00213-y

Mir, M.I., Hameeda, B., Quadriya, H., Kumar, B.K., Ilyas, N., Kee Zuan, A.T., El Enshasy, H.A., Dailin, D.J., Kassem, H.S., Gafur, A. & Sayyed, R.Z. (2022). Multifarious Indigenous Diazotrophic Rhizobacteria of Rice (Oryza sativa L.) Rhizosphere and Their Effect on Plant Growth Promotion. Frontiers in Nutrition, 8, 781764. doi: 10.3389/fnut.2021.781764

Muehe, E.M., Wang, T., & Kerl, C.F., Planer-Friedrich, B., & Fendorf, S. (2019). Rice production is threatened by coupled stresses of climate and soil arsenic. Nature Communication, 10, 4985. doi: 10.1038/s41467-019-12946-4.

Murphy, J., & Riely, J.P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica chimica acta, 27, 31-36.

Nagarajkumar, M., Bhaskaran, R., & Velazhahan, R. (2004). Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiological Research, 159,73-81.

Oliveira, M.I.D.S., Chaibub, A.A., Sousa, T.P., Cortes, M.V., de Souza, A.C., da Conceição, E.C., & de Filippi, M.C. (2019). Formulations of Pseudomonas fluorescens and Burkholderia pyrrocinia control rice blast of upland rice cultivated under a no-tillage system. Biological Control, 27, 104153. doi: 10.1016/j.biocontrol.2019.104153.

Pant, G., & Agrawal, P.K. (2014). Isolation and characterization of indole acetic acid producing plant growth promoting rhizobacteria from rhizospheric soil of withaniasomnifera. Journal of Biological and Scientific Opinion, 2(6), 377-383.

Parewa, H.P., Meena, V.S., Jain, L.K., & Choudhary, A. (2018). Sustainable crop production and soil health management through plant growth-promoting rhizobacteria. Role of rhizospheric microbes in soil, Springer, 299–329.

Perez, E., Sulbarn, M., Maria Ball, M.M., & Yarzabal, L.A. (2007). Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the southeastern Venezuelan region. Soil Biology & Biochemistry, 39, 2905-2914.

Rahman, Md. S., Islam, Md. R., Mondol, O.K., Rahman, M.S., Sabrin, F., & Zohora, U.S. (2018). Screening of protease-producing bacteria from tannery wastes of leather processing industries at Hazaribag, Bangladesh. Jahangirnagar University Journal of Biological Science, 7(1), 23-34.

Rai, A., & Nabti, E. (2017). Plant growth-promoting bacteria: Importance in vegetable production. Microbial strategies for vegetable production, Springer, 23–48.

Rajawat, M.V.S., Singh, S., Tyagi, S.P., & Saxena, A.K. (2016). A Modified Plate Assay for Rapid Screening of Potassium-Solubilizing Bacteria. Pedosphere, 26(5), 768-773. https://doi.org/10.1016/S1002-0160(15)60080-7.

Ray, D.K., Ramankutty, N., Mueller, N.D., West, P.C., & Foley, J.A. (2012). Recent patterns of crop yield growth and stagnation. Nature Communication, 23, 1293. doi: 10.1038/ncomms2296.

Reetha, S., Bhuvaneswari, A., Thamizhiniyan, P., & Ravi Mycin, T. (2014). Isolation of indole acetic acid (IAA) produces rhizobacteria of Pseudomonas fluorescens and Bacillus subtilis and enhances the growth of onion (Allimcepa. L). International Journal of Current Microbiology and Applied Science. 3, 568-574.

Sansongko, A., Nugroho, R.W., & Mulyani, D. (2018). Ammonia determination in bottled water using spectrophotometer: comparision between Nessler and Berthelot Methods. Journal Sains dan Teknology, 7, 126-134.

Sehrawat, A., Sindhu, S.S., & Glick, B.R. (2022). Hydrogen cyanide production by soil bacteria: Biological control of pests and promotion of plant growth in sustainable agriculture. Pedosphere, 32, 15-38.

Sergeeva, E., Hirkala, D.L.M., & Nelson, L.M. (2007). Production of indole-3-acetic acid, aromatic amino acid aminotransferase activities, and plant growth promotion by Pantoea agglomerans rhizosphere isolates. Plant Soil, 297, 1-13.

Shahab S., Ahmed N. & Khan N.S. (2009). Indole acetic acid production and enhanced plant growth promotion by indigenous PSBs. African Journal of Agricultural Research, 4 (11),. 1312-1316

Shariati, J.V., Malboobi, M.A., Tabrizi, Z., Tavakol, E., Owlia, P. & Safari, M. (2017). Comprehensive genomic analysis of a plant growth-promoting rhizobacterium Pantoea agglomerans strain P5. Scientific Report, 7, 15610.

Shivalee, A., Divatar, M., Sandhya, G. Ahmed, S., & Lingappa, K. (2016). Isolation and screening of soil microbes for extracellular chitinase activity. Journal of Advanced Scientific Research, 7(2), 10-14.

Sukweenadhi, J., Purwanto, M.G.M., Hardjo, P.H., Kurniawan, G., & Artadana, I.B.M. (2019). Isolation and In Vitro Screening of Plant Growth Promoting Rhizobacteria from Barak Cenana Red Rice. AIP Conference Proceedings 2155, 020037 https://doi.org/10.1063/1.5125541

Sundarapandiyan, B., & Jayalakshmi, S. (2017). Isolation, screening, and optimization of amylase production by a marine bacterium Bacillus subtilis SJ33. International Journal of Advanced Research in Biological Science, 4(12), 8-14.

Tariq, M., Noman, M., Ahmed, T., Hameed, A., Manzoor, N., & Zafar, M. (2017). Antagonistic features displayed by plant growth promoting rhizobacteria (PGPR): A review. Journal of Plant Science and Phytopathology, 1, 38–43.

Wahyudi, A.T., Astuti, R.P., Widyawati, A., Meryandini, A., & Nawangsih, A.A. (2011). Characterization of Bacillus sp. strains isolated from the rhizosphere of soybean plants for their use as potential plant growth for promoting rhizobacteria. Journal of Microbiology and Antimicrobial, 3, 34–40.

Wang, Z., Xu, G., Ma, P., Lin, Y., Yang, X., & Cao, C. (2017). Isolation and Characterization of a Phosphorus-Solubilizing Bacterium from Rhizosphere Soils and Its Colonization of Chinese Cabbage (Brassica campestris ssp. chinensis). Frontiers in Microbiology, 8, 1270. doi: 10.3389/fmicb.2017.01270

Xun, F., Xie, B., Liu, S., & Guo, C. (2015). Effect of plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environmental Science and Pollution Research, 22, 598–608.

Yang, B.M., Yao, L.X., Li, G.L., He, Z.H., & Zhou, C.M. (2015). Dynamic changes of nutrition in litchi foliar and effects of potassium-nitrogen fertilization ratio. Journal of Soil Science and Plant Nutrition, 15, 98-110

التنزيلات

منشور

2024-06-01

كيفية الاقتباس

Behera, B., Mahto, K. ., Awesh Azam, S. M. ., Mishra, R. R. ., Sethi, B. K., Pradhan, B., Singh, S. K. ., Hota, T. ., & Dey, H. . (2024). تعزيز نمو نبات الأرز المستدام بواسطة البكتيريا المعزولة من تربة الجذور. المجلة الأردنية في العلوم الزراعية, 20(2), 124–140. https://doi.org/10.35516/jjas.v20i2.1053

إصدار

القسم

Articles
##plugins.generic.dates.received## 2023-03-22
##plugins.generic.dates.accepted## 2023-10-02
##plugins.generic.dates.published## 2024-06-01