التعديلات الكيميائية للنشاء، تطلعات حول نشاء البطاطا الحلوة

المؤلفون

DOI:

https://doi.org/10.35516/jjas.v18i4.802

الكلمات المفتاحية:

النشاء المعدل، التعديل الكيميائي، الربط المتبادل، البطاطا الحلوة، الخصائص الفيزيائية والكيميائية

الملخص

يعرض البحث الحالي التعديلات والتطبيقات الكيميائية المحتملة لنشاء البطاطا الحلوة في الصناعات الغذائية وغير الغذائية. النشاء الأصلي بشكل عام وخصائص نشاء البطاطا الحلوة بشكل خاص لها العديد من الميزات والتطبيقات الوظيفية في الطب الحيوي وكذلك في صناعة الأغذية. من المتوقع أن يعزز النشاء المعدل مثل هذه الخصائص كما تمت مناقشتها في هذه المراجعة. على سبيل المثال، بسبب الطبيعة البوليمرية والمتفرعة للنشاء؛ عادة ما يكون النشاء أقل قابلية للذوبان، ويمتص كمية أقل من الماء والزيت، ويظهر قدرة قوية على الارتباط باليود. أيضا، النشويات الأصلية نسبة الهضم لها أقل بشكل ملحوظ تحت العلاج الأنزيمي. لذلك، تم تصميم تعديلات النشاء لتعزيز واحد أو أكثر من القيود المذكورة أعلاه؛ وبالتالي، فإن تعديل النشاء يمكن أن يغير الخصائص الفيزيائية والكيميائية للنشاء الأصلي لتحسين خصائصه الوظيفية. يمكن تعديل النشاء باستخدام الطرق الفيزيائية ((التلدين (ANN) ومعالجة الرطوبة الحرارية ((HMT، والعمليات المسبقة الجيلاتينية والعمليات غير الحرارية الأخرى)، والطرق الكيميائية (الأثير، والأستلة، والتعديل الحمضي، والربط الكاتيوني، والأسترة، والربط المتبادل، والأكسدة)، وطرق التعديل الأنزيمية أو عملية التغيير الجيني أو مزيج منها.

التنزيلات

بيانات التنزيل غير متوفرة بعد.

السير الشخصية للمؤلفين

Dhiya Eddine Bensaad، الجامعة الأردنية، الجبيهة، عمان الأردن

قسم التغذية والتصنيع الغذائي، كلية الزراعة، الجامعة الأردنية، الجبيهة، عمان الأردن

Mohammed Saleh، كلية الزراعة، الجامعة الأردنية، الجبيهة، عمان الأردن

قسم التغذية والتصنيع الغذائي، كلية الزراعة، الجامعة الأردنية، الجبيهة، عمان الأردن

Khalid Ismail، كلية الزراعة، الجامعة الأردنية، الجبيهة، عمان الأردن

قسم التغذية والتصنيع الغذائي، كلية الزراعة، الجامعة الأردنية، الجبيهة، عمان الأردن

Youngseung Lee، جامعة دانكوك ، جمهورية كوريا الجنوبية

قسم الغذاء و التغذية جامعة دانكوك ، جمهورية كوريا الجنوبية

George Ondier، مختبرات تايلور تكساس

مختبرات تايلور تكساس ، الولايات المتحدة الأمريكية

المراجع

Abegunde, O. K. Mu, T.-H. Chen, J.-W.and Deng, F.-M. (2013). Physicochemical characterization of sweet potato starches popularly used in the Chinese starch industry. Food Hydrocolloids 33(2), 169-177.

Alcázar-alay, S. C. Angela, M.and Meireles, A. (2015). Physicochemical properties, modifications, and applications of starches from different botanical sources. a Food Science and Technology 35(2), 215-236.

Arueya, G. L.and Oyewale, T. M. (2015). Effect of varying degrees of succinylation on the functional and morphological properties of starch from acha (Digitaria exilis Kippis Stapf). Food Chemistry 177, 258-266.

Arogundade, L. A. Mu, T.-H.andAñón, M. C. (2012). Heat-induced gelation properties of isoelectric and ultrafiltered sweet potato protein isolate and their gel microstructure. Food Research International 49(1), 216-225.

Ashogbon, A. O. Akintayo, E.and Ekiti, A. (2014). A recent trend in the physical and chemical modification of starches from different botanical sources: A review Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch/Starke 66(1-2), 41-57.

Atichokudomchai, N. Varavinit, S.and Chinachoti, P. (2004). A study of ordered structure in acid-modified tapioca starch by 13C CP/MAS solid-state NMR. Carbohydrate Polymers 58(4), 383-389.

Bello-Pérez, L. A. Agama-Acevedo, E. Zamudio-Flores, P. B. Mendez- Montealvo, G.and Rodriguez-Ambriz, S. L. (2010). Effect of low and high acetylation degree in the morphological, physicochemical, and structural characteristics of barley starch. LWT - Food Science and Technology 43(9), 1434-1440.

BeMiller, J. N. (2018). Physical Modification of Starch. In Starch in Food pp. 223-253.

Bondeson, D. Mathew, A.and Oksman, K. (2006). Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2), 171-180.

Campanha, R. B.and Franco, C. M. L. (2011). Gelatinization properties of native starches and their Näegeli dextrins. Journal of Thermal Analysis and Calorimetry 106(3), 799-804.

Déborah, L. C. Bras, J.and Dufresne, A. (2010). Starch Nanoparticles: A Review. Biomacromolecules 11, 1139-1153.

Ellis, R. P. Cochrane, M. P. Dale, M. F. B. Duffus, C. M. Lynn, A. Morrison, I. Prentice, R. D. M. Swanston, J. S.and Tiller, S. A. (1998). Starch production and industrial use. Journal of the Science of Food and Agriculture 77(3), 289-311.

Gastelo, M. Kleinwechter, U. and Bonierbale, M. (2014). Global Potato Research for a changing World Retrieved from: http. https://cipotato.org/

Genkina, N. K. Kiseleva, V. I. and Noda, T. (2009). Comparative investigation on acid hydrolysis of sweet potato starches with different amylopectin chain-length. Starch/Staerke 61(6), 321-325.

Gui-Jie, M. Peng, W. Xiang-Sheng, M. Xing, Z. and Tong, Z. (2006). Crosslinking of corn starch with sodium trimetaphosphate in the solid state by microwave irradiation. Journal of Applied Polymer Science 102(6), 5854-5860.

Haq Nawaz, R. W. M. N., and Dure, S. (2020). Physical and Chemical Modifications in Starch Structure and Reactivity. pp. 13-13.

Heinze, T. Haack, V. and Rensing, S. (2004). Starch derivatives of a high degree of functionalization. 7. Preparation of cationic 2-hydroxypropyltrimethylammonium chloride starches. Starch/Staerke 56(7), 288-296.

Hui, R. Qi-he, C. Ming-Liang, F. Qiong, X.andGuo-qing, H. (2009). Preparation and properties of octenyl succinic anhydride modified potato starch. Food Chemistry 114(1), 81-86.

Hoover, R. (2000). Acid-Treated Starches. Food Reviews International 16(3), 369-392.

Jiménez, A. Fabra, M. J. Talens, P. and Chiralt, A. (2012). Edible and Biodegradable Starch Films: A Review. Food and Bioprocess Technology 5(6), 2058- 2076.

Kim, H. S. Hwang, D. K. Kim, B. Y. and Baik, M. Y. (2012). Cross-linking of corn starch with phosphorus oxychloride under ultra-high pressure. Food Chemistry 130(4), 977-980.

Jung, J.-K. Lee, S.-U. Kozukue, N. Levin, C. E.andFriedman, M. (2011). Distribution of phenolic compounds and antioxidative activities in parts of sweet potato (Ipomoea batata L.) plants and home processed roots. Journal of Food Composition and Analysis 24(1), 29-37.

Kolaric, L. Minarovic, L. Lauková, M. and Karovic, J. (2019). Pasta noodles enriched with sweet potato starch : Impact on quality parameters and resistant starch content. Journal of Texture Studies 51, 464-474.

Koo, S. H. Lee, K. Y. and Lee, H. G. (2010). Effect of cross-linking on the physicochemical and physiological properties of corn starch. Food Hydrocolloids 24(6- 7), 619-625.

Kuo, W. Y., and Lai, H. M. (2009). Effects of reaction conditions on the physicochemical properties of cationic starch studied by RSM. Carbohydrate Polymers 75(4), 627-635.

Lawal, O. S. (2012). Succinylated Dioscorea cayenensis starch: Effect of reaction parameters and characterisation. Starch/Staerke 64(2), 145-156.

Loebenstein, G.andThottappilly, G. (2009). The Sweet potato.

Luo, Z. G., and Shi, Y. C. (2012). Preparation of acetylated waxy, normal, and high-amylose maize starches with intermediate degrees of substitution in aqueous solution and their properties. Journal of Agricultural and Food Chemistry 60(37), 9468-9475.

Mirmoghtadaie, L. Kadivar, M. and Shahedi, M. (2009). Effects of cross-linking and acetylation on oat starch properties. Food Chemistry 116(3), 709-713.

Mu, T.-H. and Singh, J. (2019). Sweet Potato Chemistry, Processing, and Nutrition. london, United Kingdom.

Nandutu, A. (2004). Biochemical, Physico-Chemical, And Nutritional Properties Of Sweet Potato (Ipomoea Batatas) And Its Processing Into An Infant Weaning Food. University of Surrey (United Kingdom).

Neerajand Bisht, V. (2018). Physiochemical and functional properties of modified sweet potato starch. international journal of chemical studies 6(2), 3484- 3487.

Obadi, M.and Xu, B. (2021). Food Hydrocolloids Review on the physicochemical properties, modifications , and applications of starches and their common modified forms used in noodle products. Food Hydrocolloids 112(August 2020), 106286-106286.

Olayinka, O. O. Olu-Owolabi, B. I.and Adebowale, K. O. (2011). Effect of succinylation on the physicochemical, rheological, thermal, and retrogradation properties of red and white sorghum starches. Food Hydrocolloids 25(3), 515-520.

Omoregie, H. E. (2019). Chemical Properties of Starch and Its Application in the Food Industry. Chemical properties of starch. Intechopen 13.

Paes, S. S. Yakimets, I., and Mitchell, J. R. (2008). Influence of gelatinization process on functional properties of cassava starch films. Food Hydrocolloids 22(5), 788-797.

Patria, A. Husna, N. E. Lubis, Y. M. and Novita, M. (2013). Physically modified sweet potato flour ( Ipomea batatas ) by variation of steaming time and drying method. 78-82.

Pi-xin, W. Xiu-li, W. Xue, D. h. Xu, K. Tan, Y. Du, X. b. and Li, W. b. (2009). Preparation and characterization of cationic corn starch with a high degree of substitution in dioxane-THF-water media. Carbohydrate Research 344(7), 851-855.

Punia, S. (2020). Barley starch modifications: Physical, chemical and enzymatic - A review. Int J Biol Macromol 144, 578-585.

Radosta, S. Vorwerg, W. Ebert, A. Begli, A. H. Grülc, D. and Wastyn, M. (2004). Properties of low-substituted cationic starch derivatives prepared by different derivatisation processes. Starch/Staerke 56(7), 277-287.

Saartrat, S. Puttanlek, C. Rungsardthong, V. and Uttapap, D. (2005). Paste and gel properties of low-substituted acetylated canna starches. Carbohydrate Polymers 61(2), 211-221.

Saleh, M. Lee, Y. and Obeidat, H. (2018). Effects of incorporating nonmodified sweet potato (Ipomoea batatas) flour on wheat pasta functional characteristics. Journal of Texture Studies 49(5), 512-519.

Santacruz, S. (2014). Characterisation of cationic potato starch by asymmetrical flow field-flow fractionation. Influence of ionic strength and degree of substitution. Carbohydrate Polymers 106(1), 166-171.

Shah, N. Mewada, R. and Tejal, M. (2016). Crosslinking of starch and its effect on viscosity behaviour. Rev Chem Eng 32(02), 265-270.

Singh, H. Lin, J. H. Huang, W. H. and Chang, Y. H. (2012). Influence of amylopectin structure on rheological and retrogradation properties of waxy rice starches. Journal of Cereal Science 56(2), 367-373.

Singh, J. Kaur, L. and McCarthy, O. J. (2007). Factors influencing the physico- chemical, morphological, thermal, and rheological properties of some chemically modified starches for food applications-A review. Food Hydrocolloids 21(1), 1-22.

Siroha, A. K. Punia, S. Purewal, S. S. Sharma, L. and Singh, A. (2020). Impact of Different Modifications on Starch Properties. pp. 91-114.

Subroto, E. Indiarto, R. Djali, M.and Rosyida, H. D. (2020). Production and application of crosslinking- Modified starch as fat replacer: A review. International Journal of Engineering Trends and Technology 68(12), 26-30.

Sun, S. Zhang, G. and Ma, C. (2016). Preparation, physicochemical characterization, and application of acetylated lotus rhizome starches. Carbohydrate Polymers 135, 10-17.

Tang, H. LI, Y. MA, H. and Sun, M. (2020). Effect of mixing cassava, potato, and sweet potato starches on the properties of their blends. CELLULOSE CHEMISTRY AND TECHNOLOGY 54(3-4), 265- 273.

Tharanathan, R. N. (2005). Starch - Value addition by modification. Critical Reviews in Food Science and Nutrition 45(5), 371-384.

Vanier, N. L. El Halal, S. L. M. Dias, A. R. G.andda Rosa Zavareze, E. (2017). Molecular structure, functionality, and applications of oxidized starches: A review. Food Chem 221, 1546-1559.

Vithu, P. Dash, S. K. and Rayaguru, K. (2019). Post-Harvest Processing and Utilization of Sweet Potato: A Review Post-Harvest Processing and Utilization of Sweet Potato: A. Food Reviews International, 1-37.

Wang, S. and Copeland, L. (2015). Effect of Acid Hydrolysis on Starch Structure and Functionality: A Review. Critical Reviews in Food Science and Nutrition 55(8), 1081-1097.

Wang, S. Ren, F. and Wang, J. (2020). Starch, Treatment , and Modification. pp.1-26.

Waterschoot, J. Gomand, S. V. Fierens, E. and Delcour, J. A. (2015). Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato, and rice starches. Starch/Staerke 67(1-2), 14-29.

Wongsagonsup, R. Pujchakarn, T. Jitrakbumrung, S. Chaiwat, W. Fuongfuchat, A. Varavinit, S. Dangtip, S.and Suphantharika, M. (2014). Effect of cross-linking on physicochemical properties of tapioca starch and its application in soup product. Carbohydrate Polymers 101(1), 656-665.

Zhang, B. Tao, H. Wei, B. Jin, Z. Xu, X .and Tian, Y. (2014). Characterization of different substituted carboxymethyl starch microgels and their interactions with lysozyme. PLoS ONE 9(12), 1-13.

Zhang, Y. R. Wang, X. L. Zhao, G. M. and Wang, Y. Z. (2012). Preparation and properties of oxidized starch with a high degree of oxidation. Carbohydrate Polymers 87(4), 2554-2562.

Zhao, J. Schols, H. A. Chen, Z. Jin, Z. Buwalda, P. and Gruppen, H. (2012). Substituent distribution within cross-linked and hydroxypropylated sweet potato starch and potato starch. Food Chemistry 133(4), 1333-1340.

Zhu, F. and Wang, S. (2014). Physicochemical properties, molecular structure, and uses of sweet potato starch. Trends in Food Science and Technology 36(2), 68-78.

Zia ud, D. Xiong, H. and Fei, P. (2017). Physical and chemical modification of starches: A review. Critical Reviews in Food Science and Nutrition 57(12), 2691-2705.

التنزيلات

منشور

2022-12-01

كيفية الاقتباس

Bensaad, D. E. ., Saleh, M. ., Ismail, K., Lee, Y. ., & Ondier, G. . . (2022). التعديلات الكيميائية للنشاء، تطلعات حول نشاء البطاطا الحلوة. المجلة الأردنية في العلوم الزراعية, 18(4), 293–308. https://doi.org/10.35516/jjas.v18i4.802

إصدار

القسم

Articles