A Comparative Study of the Effect of Magnesium Oxide (Nano-Mineral) Fertilizer on some Productive Traits of Yellow Corn Plants (Ghouta 82 Variety) in Homs
DOI:
https://doi.org/10.35516/jjas.v20i3.547Keywords:
Zea Mays. L, Gouta 82, Magnesium oxide, Nana form, mineral form, productivity traitsAbstract
This study was conducted in scientific agricultural research center in Homs (Natural Research Department) during the last season 2020, in order to compare the effect of adding magnesium oxide(MgO) fertilizer, in nano and mineral form, in some productive traits of Zea mays.L (Var Gouta 82), where four levels of magnesium oxide fertilizer(0، 50، 100، 150) % of the recommendation attached of the fertilizer bottle, which added in foliar way with the concentration(0, 1, 2 3)g/lit respectively for the studied levels, in tow form: Nano (N0, N1, N2, N3) and mineral (M0, M1, M2, M3)form, the treatments were replicated in three replications, the results that were reached gave the following: a clear significant increase in the productive properties(length of corncob, number of rows in corncob, weight of grains in corncob, weight of the corncob in plant) at the treatment 2g/lit(100%) with clear significant when spraying nano magnesium oxide over than mineral form by (33.95, 15.91, 56.60, 93.82)% compared with the blank respectively for the studied indicators, also the results showed the responding of the pope corn plant (Var Gouta 82) in productivity (ton/ha) when spraying foliar nano fertilizer magnesium oxide(MgO) over than mineral by percent(30.4)%.
Downloads
References
Alidoust, D., & Isoda, A. (2014). Phytotoxicity assessment of C-Fe₂O₃ nanoparticles on root elongation and growth of rice plant. Environmental Earth Sciences, 71(11), 5173-5182. https://doi.org/10.1007/s12665-014-3354-2
Derosa, M., Monreal, C. M., Schnitzer, M., Walsh, R., & Sultan, Y. (2010). Nanotechnology in fertilizers. Nature Nanotechnology, 5(2), 91-96. https://doi.org/10.1038/nnano.2010.23
Farnia, A., & Omidi, M. M. (2015). Effect of Nano-Zinc Chelate and Nano-Biofertilizer on yield and yield components of maize (Zea mays L.) under water stress condition. Indian Journal of Natural Sciences, 5(29), 4614-4624.
Fernandez, V., Sotiropoulos, T., & Brown, P. (2013). Foliar fertilization scientific principles and field practices. International Fertilizer Industry Association, 1-140.
Fleischer, A., O’Neill, O., & Ehwald, R. (1999). The pore size of non-graminaceous plant cell walls rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiology, 121(3), 829-838. https://doi.org/10.1104/pp.121.3.829
Ghafariyan, M. H., Malakouti, M. J., Dadpour, M. R., Stroeve, P., & Mahmoudi, M. (2013). Effects of magnetite nanoparticles on soybean chlorophyll. Environmental Science & Technology, 47(19), 10645-10652. https://doi.org/10.1021/es402411c
Hardter, R., Rex, M., & Orlovius, K. (2004). Effects of different Mg fertilizer sources on the magnesium availability in soils. Nutrient Cycling in Agroecosystems, 70(3), 249-259. https://doi.org/10.1007/s10705-004-5393-4
Hatami, M., Kariman, K., & Ghorbanpour, M. (2016). Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants. Science of the Total Environment, 571, 275-291. https://doi.org/10.1016/j.scitotenv.2016.07.137
Liu, R., & Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions: A review. Science of the Total Environment, 514, 131-139. https://doi.org/10.1016/j.scitotenv.2015.01.055
Liu, X. M., Zhang, F. D., Zhang, S. Q., He, X. S., Fang, R., & Wang, Z. (2005). Effects of nano-ferric oxide on the growth and nutrient absorption of peanut. Plant Nutrition and Fertilizer Science, 11(1), 14-18. https://doi.org/10.1016/j.scitotenv.2015.01.055
Mandeh, M. M., Omidi, M., & Rahaie, M. (2012). In vitro influences of TiO₂ nanoparticles on barley (Hordeum vulgare L.) tissue culture. Biological Trace Element Research, 150(3), 376-380. https://doi.org/10.1007/s12011-012-9415-5
Moore, M. N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environmental International, 32(6), 967-976. https://doi.org/10.1016/j.envint.2006.05.013
Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A. J., Santschi, P. H., & Sigg, L. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17(4), 372-386. https://doi.org/10.1007/s10646-008-0224-0
Orhum, G. E. (2013). Maize for life. International Journal of Food Science and Nutrition Engineering, 3(2), 13-16. https://doi.org/10.5923/j.ijfsne.20130302.02
Rameshaiah, G. N., & Jpallavi, S. (2015). Nano fertilizers and nanosensors–an attempt to develop smart agriculture. International Journal of Engineering Research and General Science, 3(2), 314-320.
Ruttkay, N. B., Krystofova, O., Nejdl, L., & Adam, V. (2017). Nanoparticles based on essential metals and their phytotoxicity. Journal of Nanobiotechnology, 15(1), 1-19. https://doi.org/10.1186/s12951-017-0314-6
Saeed, B., Gul, H., Khan, A. Z., Badshah, N. L., Parveen, L., & Khan, A. (2012). Rates and methods of nitrogen and sulfur application influence and cost-benefit analysis of agricultural production. Journal of Soil Science and Plant Nutrition, 12(1), 101-112. https://doi.org/10.4067/S0718-95162012000100011
Sharifi, R., Mohammadi, K., & Rokhzadi, A. (2016). Effect of seed priming and foliar application with micronutrients on quality of forage corn (Zea mays L.). Environmental and Experimental Biology, 14, 151-156.
Shukla, P. K., Misra, P., & Kole, C. (2016). Uptake, translocation, accumulation, transformation, and generational transmission of nanoparticles in plants. In C. Kole et al. (Eds.), Plant Nanotechnology (pp. 89-115). Springer International Publishing. https://doi.org/10.1007/978-3-319-42154-4_8
Tanou, G., Ziogas, V., & Molassiotis, A. (2017). Foliar nutrition, biostimulants, and prime-like dynamics in fruit tree physiology: New insights on an old topic. Frontiers in Plant Science, 8, 75. https://doi.org/10.3389/fpls.2017.00075
Tripathi, D. K., Singh, S., Singh, S., Pandey, R., Singh, V. P., Sharma, N. C., Prasad, S. M., Dubey, D. K., & Chauhan, D. K. (2017). An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation, and phytotoxicity. Plant Physiology and Biochemistry, 110, 2-12. https://doi.org/10.1016/j.plaphy.2016.09.016
USDA (United States Department of Agriculture). (2018). World agriculture production. Foreign Agriculture Service, Office of Global Analysis, Washington, Circular Series WAP 1-18.
Walpola, B. C., & Yoon, M. H. (2012). Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: A review. African Journal of Microbiology Research, 6(37), 6600-6605. https://doi.org/10.5897/AJMR12.028
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jordan Journal of Agricultural Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2023-11-02
Published 2024-09-01