Germination Performance of Wild Lupine Seeds (Lupinus varius L.) in Jordan Using Different Breaking Dormancy Treatments

Authors

DOI:

https://doi.org/10.35516/JJAS.3744

Keywords:

Chemical scarification, germination rate, mechanical scarification, seed dormancy, radicle length

Abstract

Wild lupine (Lupinus varius L.) is an annual plant native to the Mediterranean region. Only a few studies have investigated the germination performance of wild lupine seeds in the Mediterranean region and examined different effects of temperatures and multiple dormancy-breaking treatments, which could help crop breeders to develop varieties more resilient to climate change. This study was conducted to assess how different dormancy-breaking treatments, including hot water (80 °C), chemical scarification using sulfuric acid (H₂SO₄), and mechanical scarification, affect the germination rate and radicle length of wild lupine seeds when exposed to four controlled temperatures: 10, 14, 18, and 22 °C. A complete randomized design with three replications was used in this study. Mechanical scarification combined with a temperature of 22°C for 15 days was the most effective treatment for breaking the dormancy and resulted in the highest germination percentage (93.3%) and the highest radicle length (7.6 mm) for lupine seeds. In contrast, the lowest germination percentage (13.1-13.3%) was observed for H₂SO₄ and control wild lupine seeds (untreated) incubated at 10°C. In conclusion, mechanical scarification is an excellent method for breaking the seed dormancy of wild lupine seeds.

Downloads

Download data is not yet available.

Author Biographies

Wisam M. Obeidat , University of Jordan, Jordan

University of Jordan, Faculty of Agriculture, Department of Plant Protection, Amman 11942, Jordan

Khaldoun O. AL SANE, National Agricultural Research Center (NARC), Jordan

National Agricultural Research Center (NARC), P.O. Box 639, Baq'a 19381 Jordan

Ahmad S. AL-EDWAN, National Agricultural Research Center (NARC), Jordan

National Agricultural Research Center (NARC), P.O. Box 639, Baq'a 19381 Jordan

Abdul Latief AL-GHZAWI, The Hashemite University, Jordan

The Hashemite University, Department of Biology and Biotechnology, P. O. Box 150459, Zarqa 13115 Jordan

Khaled M. ABULAILA, National Agricultural Research Center (NARC), Jordan

National Agricultural Research Center (NARC), P.O. Box 639, Baq'a 19381 Jordan.

Mohammad AL-SALEM, Jordan University of Science and Technology (JUST), Jordan

Jordan University of Science and Technology (JUST), Department of Plant Production, P.O.Box 3030, Irbid 22110 Jordan.

Abdul-salam JUHMANI, The Hashemite University, Jordan

The Hashemite University, Department of Biology and Biotechnology, P. O. Box 150459, Zarqa 13115 Jordan.

Abdel Razzaq ALTAWAHA, National Agricultural Research Center (NARC), Jordan

National Agricultural Research Center (NARC), P.O. Box 639, Baq'a 19381 Jordan.

References

Ačko, K. D., & Flajšman, M. (2023). Production and Utilization of Lupinus spp. IntechOpen. https://doi.org/10.5772/intechopen.110227

Ahmed, A. A., Abdel-Wahab, E. I., Ghareeb, Z. E., & Ashrei, A. A. (2023). Morphological characterization and agronomic traits of some lupine genotypes. Egyptian Journal of Agricultural Research, 101(2), 477-496. https://doi.org/10.21608/ejar.2023.193896.1349

Al-Ghzawi, A. L. A., Khalaf, Y. B., Al-Ajlouni, Z. I., AL-Quraan, N. A., Musallam, I., & Hani, N. B. (2018). The effect of supplemental irrigation on canopy temperature depression, chlorophyll content, and water use efficiency in three wheat (Triticum aestivum L. and T. durum Desf.) varieties grown in dry regions of Jordan. Agriculture, 8 (5), 67. https://doi.org/10.3390/agriculture8050067

Al-Ghzawi, A. L. A., Al-Ajlouni, Z. I., Sane, K. O. A., Bsoul, E. Y., Musallam, I., Khalaf, Y. B., Al-Tawaha, A., Aldwairi Y., & Al-Saqqar, H. (2019). Yield stability and adaptation of four spring barley (Hordeum vulgare L.) cultivars under rainfed conditions. Research on Crops, 20 (1), 10-18. https://doi.org/10.31830/2348-7542.2019.002

Al-Ghzawi, A. L. A., Al Khateeb, W., Rjoub, A., Al-Tawaha, A. R. M., Musallam, I., & Al Sane, K. O. (2019). Lead toxicity affects growth and biochemical content in various genotypes of barley (Hordeum vulgare L.). Bulgarian Journal of Agricultural Science, 25(1), 55-61.

Al-Eisawi D. (1982). List of Jordan vascular plants. Botanische Staatssammlung München,18, 79-182. Ammn, Jordan.

Asaadi, A. M., Heshmati, G., & Dadkhah, A. (2015). Effects of different treatments to stimulate seed germination of Salsola arbusculiformis Drob. Ecopersia, 3(3), 1077-1088. https://ecopersia.modares.ac.ir/article-24-9963-en.html

Bermúdez-Torres, K., Ferval, M., & Legal, L. (2015). Lupinus species in Central Mexico in the Era of Climate Change: adaptation, migration, or extinction?. Climate Change Impacts on High-Altitude Ecosystems, 215-228. https://doi.org/10.1007/978-3-319-12859-7_8

Cowling, W. A., Bevan, J. B., & Mario E. T. (1998). Lupin. Lupinus L. Promoting the conservation and use of underutilized and neglected crops. 23. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Institute of Plant Genetics and Crop Plant Research (IPGRI) via delle sette Chiese, (pp. 1-100). Rome, Italy. https://www.researchgate.net/publication/287391705_Lupin_Lupinus_spp_Promoting_the_conservation_and_use_of_underutilized_and_neglected_crops_23

Drummond, C. S., Eastwood, R. J., Miotto, S. T., & Hughes, C. E. (2012). Multiple continental radiations and correlates of diversification in Lupinus (Leguminosae): testing for key innovation with incomplete taxon sampling. Systematic Biology, 61(3), 443-460. https://doi.org/10.1093/sysbio/syr126

Geneve R.L. (2003). Impact of temperature on seed dormancy. HortScience, 38, 336-341. https://doi.org/10.21273/hortsci.38.3.336

Greipsson, S., & El-Mayas, H. (2003). Seed set, germination, and seedling establishment in Lupinus nootkatensis. Journal of New Seeds, 5 (4), 1-15. https://doi.org/10.1300/J153v05n04_01

Halvorson, J. J., Smith, J. L., & Kennedy, A. C. (2005). Lupine effects on soil development and function during early primary succession at Mount St. Helens. In Ecological responses to the 1980 eruption of Mount St. Helens (pp. 243-254). Springer. https://doi.org/10.1007/0-387-28150-9_17

Hatzilazarou, S., Pipinis, E., Kostas, S., Stagiopoulou, R., Gitsa, K., Dariotis, E., ... & Krigas, N. (2023). Influence of temperature on seed germination of five wild-growing Tulipa species of Greece associated with their ecological profiles: Implications for conservation and cultivation. Plants, 12 (7), 1574. https://doi.org/10.3390/ plants12071574

Hi̇looğlu, M., Sözen, E., Yücel, E., & Kandemir, A. (2018). Chemical applications, scarification and stratification effects on seed germination of rare endemic Verbascum calycosum Hausskn. ex Murb.(Scrophulariaceae). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46 (2), 376-380. https://doi.org/10.15835/nbha46210746

Jaganathan, G. K. (2022). Unravelling the paradox in physically dormant species: elucidating the onset of dormancy after dispersal and dormancy-cycling. Annals of Botany, 130 (2), 121-129. https://doi.org/10.1093/aob/mcac084

Jones, C., Jensen, S., & Stevens, M. (2010). An evaluation of seed scarification methods of four native Lupinus species. In: Pendleton, Rosemary; Meyer, Susan; Schultz, Bitsy, eds. Conference Proceedings: Seed Ecology III-The Third International Society for Seed Science Meeting on Seeds and the Environment-" Seeds and Change"; June 20-June 24, 2010; Salt Lake City, Utah, USA. Albuquerque, NM: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. p. 74-75. https://research.fs.usda.gov/treesearch/36964

Karaguzel, O. S. M. A. N., Cakmakci, S. A. D. I. K., Ortacesme, V. E. L. I., & Aydinoglu, B. I. L. A. L. (2004). Influence of seed coat treatments on germination and early seedling growth of Lupinus varius L. Pakistan Journal of Botany 36 (1), 65-74.

Knecht, K. T., Sanchez, P., & Kinder, D. H. (2020). Lupine Seeds (Lupinus spp.): history of use, use as an antihyperglycemic medicinal, and use as a food plant. In Nuts and Seeds in Health and Disease Prevention (pp. 393-402). Elsevier. https://doi.org/10.1016/b978-0-12-818553-7.00027-9

Knight, R. (2012). Linking Research and Marketing Opportunities for Pulses in the 21st Century: Proceedings of the Third International Food Legumes Research Conference (Vol. 34). Springer Science & Business Media. https://doi.org/10.1007/978-94-011-4385-1

Mahfouze, S. A., Mahfouze, H. A., Dalia M. F. Mubarak, D. M. F., & Esmail, R.M. (2015). Evaluation of Lupinus albus L. as a forage crop under rainfed conditions in Jordan, Jordan Journal of Biological Sciences, 11(1), 47-56.

Marrs RH, Owen LD, Roberts RD, Bradshaw AD. 1982. Tree Lupin (Lupinus arboreus Sims): an ideal nurse crop for land restoration and amenity plantings. Arboricultural Journal: The International Journal Of Urban Forestry 6, 161–174. https://doi.org/10.1080/03071375.1982.9746567

Navarro, A., Fos, S., Laguna, E., Durán, D., Rey, L., Rubio-Sanz, L., et al. (2014). Conservation of endangered Lupinus mariae-josephae in its natural habitat by inoculation with selected, native Bradyrhizobium strains. Plos One, 9:e102205. https://doi.org/10.1371/journal.pone.0102205

Ogtr. (2021). The Biology of Lupinus L. (lupin or lupine). Office of the Gene Technology Regulator, Australian Government, Canberra, P. 63.

Paim, L. P., Avrella, E. D., Horlle, J. C. A., Fior, C. S., Lazarotto, M., & Brunes, A. P. (2021). Response of Lupinus bracteolaris seeds to pre-germinative treatments and experimental conditions. Revista de Investigación Agraria y Ambiental. Bogotá, Colombia, 12 (2), 51-66. https://doi.org/10.22490/21456453.4278

Pantsyreva, H. V. (2019). Morphological and ecological-biological evaluation of the decorative species of the genus Lupinus L. Ukrainian Journal of Ecology, 9 (3), 74-77. https://doi.org/10.15421/2019_711

Planchuelo, A.M. (2020). Lupinus pilosus. The IUCN Red List of Threatened Species. https://dx.doi.org/10.2305/iucn.uk.2020-2.rlts.t19379279A100333517.en

Sfairi, Y., Lahcen, O., Al Feddy, M. N., & Abbad, A. (2012). Dormancy-breaking and salinity/water stress effects on seed germination of Atlas cypress, an endemic and threatened coniferous species in Morocco. African Journal of Biotechnology, 11(19), 4385-4390. https://doi.org/10.5897/ajb11.3271

Sholars, T. & Riggins, R. (2022). Lupinus. in Jepson Flora Project (Eds.) Jepson eFlora, Revision 11.

Swiecicki, W., Rybczynski, J., & Swiecicki, W. K. (2000). Domestication and genetics of the yellow lupin (Lupinus luteus L.) and the biotechnological improvement of lupins. Journal of Applied Genetics, 41(1), 11-34.

Wink, M., Meißner, C., & Witte, L. (1995). Patterns of quinolizidine alkaloids in 56 species of the genus Lupinus. Phytochemistry, 38(1), 139-153. https://doi.org/10.1016/0031-9422(95)91890-D

Taifour H. (2017). Jordan Plant Red List II. Royal Botanic Garden. p 966. Amman, Jordan

Downloads

Published

01-09-2025

How to Cite

Obeidat , W. M., AL SANE, K. . O., AL-EDWAN, A. S., AL-GHZAWI, A. L. ., ABULAILA, K. M., AL-SALEM, M. ., JUHMANI, A.- salam, & ALTAWAHA, A. R. . (2025). Germination Performance of Wild Lupine Seeds (Lupinus varius L.) in Jordan Using Different Breaking Dormancy Treatments. Jordan Journal of Agricultural Sciences, 21(3), 244–253. https://doi.org/10.35516/JJAS.3744

Issue

Section

Articles
Received 2024-12-15
Accepted 2025-08-28
Published 2025-09-01